
Matita Tutorial

Andrea Asperti

May 13, 2009

Contents

1 Getting started 5
1.1 Natural Numbers . 5
1.2 Double induction . 10
1.3 Negation and Discrimination 12

2 Defining properties 15
2.1 Recursive properties . 17
2.2 Prop vs. Bool . 19

3 A non trivial example 23

3

Chapter 1

Getting started

1.1 Natural Numbers

Natural numbers are the smallest set generated by a constant O and a suc-
cessor function S. Sets of this kind, freely generated by a finite number of
constructors, are known as inductive types.
The definition of natural numbers in Matita reads as follows:

inductive nat : Set \def

| O : nat

| S : nat \to nat.

By this syntax, we declare we are defining an inductive type of name nat

(which is a Set), built up from the two constructors O of type nat and S of
type nat→ nat.

Let us now define a simple function over natural numbers. The sum of
two natural numbers n and m may be defined as follows: if n is O then the
sum is m, otherwise, if n is the successor of some natural number p, then
the sum of n and m is equal to the successor of the sum of p and m. In this
way, we have reduced the computation of the sum of two natural numbers
to a similar problem, but on smaller input values. This is an example of a
recursive definition, that is a definition of a function in terms of the function
itself.

In Matita, the previous definition of the sum over natural numbers would
be written in the following way:

let rec plus n m \def

5

match n with

[O \Rightarrow m

| (S p) \Rightarrow S (plus p m)].

The let rec construct is used to declare a recursive function with name
plus. The body of the function follows the \def keyword: it starts with a
pattern-matching operation over the input variable n. Since n is a natural
number, it is either O or (S p) for some integer p; in the first case the result
is m, otherwise the result is the successor of the recursive call (plus p m).

Let us now prove our first theorem. The first thing to do is to give a name
to the theorem. The choice of the name is not entirely negligible, since it is
the only way we shall have to refer to it (e.g. for later use inside different
proofs). We shall come back to this problem in section ??; for the moment
we merely suggest to give a name that refers to the statement, it is easy to
remember and possibly also easy to guess.

To use the standard definition of equality and attach the standard infix
notation for addition to the recursive function just defined, we need the
following commands:

include "logic/equality.ma".

interpretation "my plus over naturals" ’plus a b = (plus a b).

In the next example, we are going to prove that for any n we have n =
O + n; we give to thie result the name plus_O_n:

theorem plus_O_n: \forall n:nat. n = plus O n.

The first thing to note is the syntax for binders; in particular, we work
in a typed framework and the quantified variable should be followed by the
declaration of its type: n:nat in the previous case. Secondly, the body of the
quantifier is introduced by a “dot” (a notation borrowed from the λ-calculus
of Church); the scope of the binder is thus the expression following the dot.

When you enter the previous theorem declaration in Matita, the system
automatically starts a new proof-session, opening a goal window in the right
upper corner. Initially, there is only one goal to prove, that is the given
statement. The proof essentially proceed in a bottom-up fashion, by giving
proof-command to the system, called tactics. After executing these com-
mands we shall be typically left with some sub-goals to prove, and we shall
go on in this way until all subgoals will be finally closed.

All proofs typically start assuming the hypothesis of the statement. This
operation is performed by the intros tactic. After executing intros we are
left to prove n = plus O n in a context where we have assumed n : nat.

n : nat

n = plus O n

The horizontal line divides the context from the goal.
The definition of plus, is algorithmic: so we may reduce the current goal, using
e.g. the simplify command (see section ?? for other kinds of reductions).
In particular, plus O n n, so after simplification we are left with the goal.

n : nat

n = n

This is obviously true by reflexivity of equality, and not surprsingly we con-
clude the proof with an invocation of the reflexivity tactic. Once the proof
is finished, i.e. we have no open goal left, we should still invoke the qed com-
mand, that re-check the proof and saves it in the current environment.
The complete proof reads as follows:

theorem plus_O_n: \forall n:nat. n = O+n.

intros.simplify.reflexivity.

qed.

Let us now try to prove that for any n, n = n+O (we have not proven yet
the commutativity of plus, so the result is not entirely trivial). We would
expect to proceed as in the previous proof, so we start with intros, and
then try to simplify. But (maybe) here comes a surprise: the expression
n = n+O does not reduce to n. The reason is that the function plus works
by case analysis on the first argument, and if this argument is not an instance
of a constructor, no reduction is possible.
So, what should we do?
In this case, we must proceed by induction on n. In Matita, the name of
the tactic invoking the induction principle for a variable of a given inductive
type is elim. So, instead of simplify we type elim n:

theorem plus_n_O: \forall n:nat. n = n+O.

intros. elim n.

At this point, we are left with two goals: we must prove that the goal
is true when n is O (base case), and we must prove that, supposing the
statement holds for n, that is n = n+O, it still holds for the successor of n,
that is Sn = (Sn) +O (inductive case).

goal 1 goal 2

n : nat n : nat
n1 : nat

O = plus O O H : n1 = plus n1 O

S n1 = plus (S n1) O

The first goal is easy: we close it with simplify and reflexivity. For
the second goal, after simplification we get:

n : nat
n1 : nat
n1 = plus n1 O

S n1 = S(plus n1 O)

Now we have to use the induction hypothesis H, rewriting (plus n1 O) with
n1. This is done by invoking the tactic rewrite < H, where H must be the
proof of an equality, and < gives the orientation (rewrite > H would rewrite
n1 with plus n1 O).
After the rewriting step, we may conclude the proof with reflexivity. The
whole proof runs as follows:

theorem plus_O_n: \forall n:nat. n = O+n.

intros.elim n.

simplify.reflexivity.

simplify.rewrite < H.reflexivity.

qed.

In a very (sic!) similar way we prove that forall n and m, plus n (S m) =
S (plus n m):

theorem plus_n_Sm : \forall n,m:nat. S (n+m) = n+(S m).

intros.elim n.

simplify.reflexivity.

simplify.rewrite < H.reflexivity.

qed.

We are now ready to prove the commutativity property. As usual, we
begin assuming the hypothesis, and then prooceed by induction on n. At
this point we are left with two subgoals that, after simplification, look as
follow:

goal 1 goal 2

n : nat n : nat
m : nat m : nat

n1 : nat
m = plus m O H : plus n1 m = plus m n1

S (plus n1 m) = plus m (S n1)

So, we may close the former with plus_n_O and the latter rewriting plus n1 m
with plus m n1 (by H), and then using plus_n_Sm. The tactic that allows
to use an already proved result is apply foo, where foo is the name of the
result. The whole proof is thus:

theorem sym_plus: \forall n,m:nat. n+m = m+n.

intros.elim n.

simplify.apply plus_n_O.

simplify.rewrite > H.apply plus_n_Sm.

qed.

The tactics intros, simplify, elim, rewrite and apply form a basic
set of elementary tactics that is already complete for the purpose of proving
theorems. Many other tactics are in fact particular cases of the previous ones
or can be essentially expressed as a suitable composition of these tactics.
For instance, the reflexivity tactic literally amounts to apply the proof
refl_eq of the reflexivity principle; the exact tactic is similar to apply

but it also presumes to close the current goal; the useful tactic assumption

iterate the application of exact on all the hypothesis in the current context,
and so on.

1.2 Double induction

To have a gist of the power of the tools we already have, let us prove the
following double induction principle for natural numbers, that we shall fre-
quently use in the following sections.

theorem nat_elim2 :

\forall R:nat \to nat \to Prop.

(\forall n:nat. R O n)

\to (\forall n:nat. R (S n) O)

\to (\forall n,m:nat. R n m \to R (S n) (S m))

\to \forall n,m:nat. R n m.

Let us observe, first of all, the type of R. Prop is the universe of all (definable)
Propositions, and R is a function that, given two natural numbers, gives back
a proposition; in other words, R is just a binary relation over natural numbers.
The stement says that if the relation holds along the two axes R O n and
R m O, and all diagonals, then it holds everywhere.

In order to prove nat_elim2 we start adding to the context the first
five hypothesis by means of the command intros 5 (the numeric parameter
express the number of premisses to shift in the context; writing intro is
the same as intros 1), getting the goal ∀m.R n m. We now proceed by
induction on n, that produces two subgoals:

goal 1 goal 2

R : nat→ nat→ Prop R : nat→ nat→ Prop
H : ∀n : nat.R O n H : ∀n : nat.R O n
H1 : ∀n : nat.R (Sn) O H1 : ∀n : nat.R (Sn) O
H2 : ∀n,m : nat. H2 : ∀n,m : nat.

R n m→ R (S n) (S m) R n m→ R (S n) (S m)
n : nat n : nat
m : nat n1 : nat

H3 : ∀m : nat.R n1 m
∀m : nat.R O m m : nat

R (S n1) m

The first goal is subsumed by H. For the second one it is enough to reason
by cases on m, that is essentially analogous to induction, but for the fact
that we renounce to the induction hypothesis. In particular, in our case, the
command cases m transform the second goal in the two subgoals below:

goal 2.1 goal 2.2

R : nat→ nat→ Prop R : nat→ nat→ Prop
H : ∀n : nat.R O n H : ∀n : nat.R O n
H1 : ∀n : nat.R (Sn) O H1 : ∀n : nat.R (Sn) O
H2 : ∀n,m : nat. H2 : ∀n,m : nat.

R n m→ R (S n) (S m) R n m→ R (S n) (S m)
n : nat n : nat
n1 : nat n1 : nat
H3 : ∀m : nat.R n1 m H3 : ∀m : nat.R n1 m
m : nat m : nat

n2 : nat
R (S n1) O

R (S n1) (Sn2)

The first goal is subsumed by H1, while for the second one we have just to
apply H2 and H3. The full script is:

theorem nat_elim2 :

\forall R:nat \to nat \to Prop.

(\forall n:nat. R O n)

\to (\forall n:nat. R (S n) O)

\to (\forall n,m:nat. R n m \to R (S n) (S m))

\to \forall n,m:nat. R n m.

intros 5;elim n

[apply H

| cases m

[apply H1

| apply H2. apply H3]]

qed.

1.3 Negation and Discrimination

Two major axioms of Peano axiomatization of natural numbers are those
stating the inequality, for any x, between O and S x, and the injectivity of
S. More generally, given any inductive type, we expect to be able to prove
that all constructors are injective and distinguishable from each other.

The statement ∀x.Not (O = (Sx)) is our first example involving negation.
In the logical framework of Matita, negation is not considered as a primitive
connective, but is instead defined in terms of the absurdity proposition False.
Explicitly, we may conclude Not P , if and only if assuming P leads to an
asburdity, that is P → False.

What about False? The only logical principle related to False is the
ancient property expressed by the latin motto ex falso quodlibet, that is,
everything may be deduced under a false assumption. Formally, this is ex-
pressed by the following property that, for the moment, we may assume to
be a primitive constant of the system:

False ind : ∀P : Prop.False→ P

As for injectivity/separability of constructors, Matita provides a tactic de-
struct to this aim. The tactic expects in input a term of type e1 = e2, and
recursively compare e1 and e2, skipping common constructors (injectivity)
and halting on subexpressions differing on their leftmost outermost symbols.
If any of these correponding symbols are two different constructors the tactics
automatically closes the goal having obtained a contradiction. Otherwise, it
adds to the context all new equalities between the different subformulae in
corresponding positions.

Luckily, the tactic is much simpler to use than to explain. Let us see a
couple of examples.

theorem not_eq_O_S: \forall n:nat. Not (O= S n).

We start with intros, then unfold Not to change the goal into O = S n→
False, and intro again, to push O = S n into the context. We are left with
the goal

n : nat
H : O = S n

False

and to close it, it is enough to call destruct H.
Let us look at the injectivity of the successor function:

theorem inj_S: \forall n,m:nat. S n = S m \to n = m.

After intros we have the goal
n : nat
H : S n = S m

n = m

In this case, destruct H changes the goal to n = n, and we may hence close
the goal with reflexivity.

Chapter 2

Defining properties

So far, the only property we have been dealing with has been equality that
we have essentially assumed as a primitive notion1 of Matita, governed via
rewriting and reflexivity (prove simmetry and transitivity as an exercise).

Our next step is to define a binary predicate le n m asserting that n is
less or equal to m. As we shall see, we have a lot of different ways to do it.

Let us start from the following mathematical definition: n is less or equal
to m if and only if it exists p such n + p = m. We have essentially two
different, almost equivalent, way to encode such a predicate in our logical
framework: as a definition or as an inductive type.
In the first case, we would write:

definition le1: nat \to nat \to Prop \def

\lambda n,m.\exist p:nat.n+p = m.

However, an experienced Matita user would probably prefer to transform the
previous definition of le into the smallest property induced by an integer p
and a proof that n+ p = m, namely:

inductive le2 (n,m:nat) : Prop \def

le_witness : \forall p:nat.n+p = m \to le2 n m.

le_witness is the user-defined name of the costructor; it could be changed
with any other name without affecting the semantics of the definition. Note

1See more in Section ??

15

that the two parameters n and m are also parameters for the constructor: in
other words the full type of le_witness is

∀n,m, p : nat.n+ p = m→ le2 n m

It may be instructive to formally prove the equivalence between the two
previous definitions. Let us look at the first implication:

lemma le1_to_le2:

\forall n,m.le1 n m \to le2 n m.

After introducing the hypothesis, we are left with the following goal:
n : nat
m : nat
H : le1 n m

le2 n m

First of all we must unfold the defintion of le1 in the hypothesis H, that is
done with the command:

unfold le1 in H.

The execution of the previous command transforms the hypothesis H into
the formula ∃p : nat.n + p = m. The next step is to use the ∃-elimination
rule, that just amounts to type elim H. At this point we are left with the
goal

n : nat
m : nat
H : ∃p : nat.n+ p = m
p : nat
H1 : n+ p = m

le2 n m

and we may close the proof with exact (le_witness n m p H1).
The full script is hence:

lemma le1_to_le: \forall n,m.le1 n m \to le2 n m.

intros.

unfold le1 in H.

elim H.

exact (le_witness n m p H1).

qed.

The other direction is very similar:

lemma le2_to_le1: \forall n,m.le2 n m \to le1 n m.

intros (n m H).

elim H.

exact (ex_intro ? ? n2 H1).

qed.

In the previous proof, n2 is the witness obtained eliminatingH, while ex_intro
is a (library) constant corresponding to the logical rule of ∃-introduction, with
type

∀A : Type.∀P : A→ Prop.∀x : A.Px→ ∃x : A.Px

Let us remark that this second proof is slightly more compact than the pre-
vious one, not requiring a preliminary unfolding of the definition of le before
using (eliminating) it. This is one of the practical reason for preferring le2

over le1; more generally, as we shall see in section ??, the existential quan-
tifier is just a particular case of inductive type, and the direct definition of a
property as an inductive types does usually allow a simpler and more direct
destructuration of the corresponding definition.

2.1 Recursive properties

The previous definition of le relies on the definition of the sum, that is not
very elegant. An alternative way to look at the less or equal relation is as the
smallest relation R being reflexive and such that R n m implies R n (S m).
This notion is precisely captured by the following inductive type:

inductive le (n:nat) : nat \to Prop \def

| le_n : le n n

| le_S : \forall m:nat. le n m \to le n (S m).

Again, let us prove the equivalence between this definition and, say, the
definition of le2.

lemma le2_to_le: \forall n,m:nat. le2 n m \to le n m .

As usual, we start with intros; then we eliminate the hypothesis le2 n m,
by typing elim H 1, obtaining the following goal:

n : nat
m : nat
H : le2 n m
n2 : nat

n+ n2 = m→ le n m

Note the “1” at the end of the elim invocation. By default, the elim tactic
automatically executes intros as a final operation, hence also the premise
n + n2 = m would have been shifted from the conclusion into the context.
The numeric parameter “1” is actually interpeted as an argument for intros,
that is as the number of new hypothesis to be added to the context.

At this point, we would expect to proceed by induction on n2; unfortu-
nately, we would soon get stuck (check it as an exercise). This is a typical
situation: we need to prove a given statement, but in order to prove it by
induction, we need to prove a stronger one, since otherwise we would not be
able to properly use the induction hypothesis. In our case, the proposition
we want to prove is not

n+ n2 = m→ le n m

where m would be a fixed parameter, but

∀m.n+ n2 = m→ le n m

Hence, we need to generalize our goal with respect to m, that is done by in-
voking generalize in match m (the syntax of Matita is here a bit awkward;
we plan to change it in the future).

The rest of the script merely uses results we already know, and the reader
should have no problem to follow its execution. Here is the full proof:

lemma le2_to_le: \forall n,m:nat. le2 n m \to le n m .

intros.

elim H 1.

generalize in match m.

elim n2

[rewrite < plus_n_O in H1.

rewrite < H1.

apply le_n

|rewrite < plus_n_Sm in H2.

rewrite < H2.

apply le_S.

apply H1.

reflexivity.

]

qed.

The converse is equally easy.

lemma le_to_le2: \forall n,m:nat. le n m \to le2 n m.

intros.

elim H

[apply (le_witness ? ? O).

rewrite < plus_n_O.

reflexivity

|elim H2.

apply (le_witness ? ? (S n2)).

rewrite < plus_n_Sm.

apply eq_f.

assumption

]

qed.

2.2 Prop vs. Bool

The definition of le of the previous section does not give an effective way
to decide if n is less or equal to m. What we are looking for is a binary
boolean function returning true if n ≤ m, and false otherwise. Such a com-
putable function is usually called a decision procedure. A property admitting
a decision procedure is called recursive, or decidable2.

First of all, let us define the type of booleans; it is the smallest type just
containing two elements true and false:

2One of the major mathematical results of the 20-th century, and one of the starting
point of Computability Theory, has been the discovery that not all arithmetical properties
are decidables

inductive bool : Set \def

| true : bool

| false : bool.

Then, we may define our decision procedure for the less or equal relation
in then following way:

let rec leb n m \def

match n with

[O \Rightarrow true

| (S p) \Rightarrow

match m with

[O \Rightarrow false

| (S q) \Rightarrow leb p q]].

As soon as you have a decision procedure, it is convenient to define a
corresponding elimination principle, that allows to relate in a very general
way the boolean function (in this case leb) to its propositional counterpart
(le). In our case, the elimination principle says that for all natural numbers
n and m and any predicate P over booleans, provided we may prove (P true)
under the assumption (n ≤ m), and (P false) under the assumption n � m,
then we may conclude (P (leb n m)):

(n ≤ m→ (P true))→ (n � m→ (P false))→ P (leb n m)

The proof requires three small lemmas, left as an exercise for the reader:

theorem not_le_Sn_O:

\forall n:nat. S n \nleq O.

theorem le_S_S:

\forall n,m:nat. n \leq m \to S n \leq S m.

theorem le_S_S_to_le :

\forall n,m:nat. S n \leq S m \to n \leq m.

Once we have these three lemmas above, the proof of leb_elim is more or
less straightforward:

theorem leb_elim: \forall n,m:nat. \forall P:bool \to Prop.

(n \leq m \to (P true)) \to (n \nleq m \to (P false)) \to

P (leb n m).

apply nat_elim2; intros; simplify

[apply H.apply le_O_n

|apply H1.apply not_le_Sn_O.

|apply H;intros

[apply H1.apply le_S_S.assumption.

|apply H2.unfold Not.intros.

apply H3.apply le_S_S_to_le.assumption

]

]

qed.

Let us just remark the use of the separator “;”. The semicolon is distributive:
in a configuration of the kind c1; c2 the latter command c2 will be applied
to all goals opened by c1. In many cases, the semicolon allows to sensibly
shorten the lenght of the scripts, but it can be always avoided, and its use is
essentially a matter of taste.

The second remark is about the management of negation. By definition
Not P is equivalent to P → False. Hence, having the goal

n : nat
m : nat
H : le1 n m

le n m

In order to appreciate the power of leb_elim let us prove that forall n and
m, leb n m = true→ n ≤ m, and viceversa (in general, it is better to avoid
to state formal theorems using the if-and-only-if connective, since they are
cumbersome to use).

The formal statement is the following

theorem leb_true_to_le:

\forall n,m:nat. leb n m = true \to n \leq m.

We start shifting n andm into the context, hence apply leb_elim and intros

again, on all subgoals. At this point we are left with two subgoals:

goal 1 goal 2

n : nat n : nat
m : nat m : nat
H : n ≤ m H : n 6≤ m
H1 : true = true H1 : false = true

n ≤ m n ≤ m

The first goal is trivally closed by assumption. As for the second goal, it
contains the contradictory hypothesis false = true, so again the goal is true
since ex falso quodlibet. This is the complete proof:

intros 2.apply leb_elim;intros

[assumption

|apply False_ind.apply not_eq_true_false.

apply sym_eq.assumption

]

qed.

The proof of the converse, that is

theorem le_to_leb_true_to:

\forall n,m:nat. n \leq m \to leb n m = true.

is even simpler, and is left as exercise for the reader.

Chapter 3

A non trivial example

In a way similar to plus we may define the product of two natural numbers:

let rec times n m \def

match n with

[O \Rightarrow O

| (S p) \Rightarrow m+(times p m)].

Our next step is to define a binary predicate divides n m asserting that n
is a divisor of m. As exlplained in the previous section, we may either use a
defintion or an inductive type. In the first case, we would write:

definition divides1: nat \to nat \to Prop \def

\lambda n,m.\exist p:nat.m = times n p.

However, as we have seen, it is preferable to define divides as the smallest
property induced by a “witness” p and a proof that m = np, namely:

inductive divides (n,m:nat) : Prop \def

witness : \forall p:nat.m = times n p \to divides n m.

Let us now address the decidability of divides, i.e. the problem to define
an algorithmic boolean function that taken in input two integers n and m
returns true if n divides m, and false otherwise.

A convenient way to proceed is to address the slightly more general prob-
lem to compute the modulus (mod) of two numbers (i.e. the rest of an
integewr division); obviously n divides m if and only if m mod n = 0.

The natural way to define mod as a recursive function would look some-
thing like the following:

23

let rec mod m n: nat \def

match (leb (S m) n) with

[true \Rightarrow m

| false \Rightarrow mod (m-n) n

]

The problem with this definition is that the calculus is based on a particular
kind or recursion that must be guaranteed to be well-founded (never di-
verge)1. This is typically the case when the recursive parameter “decreases”
in the recursive call. Unfortunately, there is no trivial way, for the system, to
understand that m−n is “smaller’ than m w.r.t. some well founded ordering
(minus is a user defined operation!). What the system is able to understand
is essentially a syntactic ordering, based on the structure of inductive data:
for instance n is “smaller” of S n.

A simple but effective approach to this problem is that of defining an
auxiliary function accepting in input an extra-parameter t providing an upper
bound to the complexity of the function, and then recurring on such an
argument. For instance, in the case of the modulus, we may eventually
complete the computation of mod m n in less than m steps. So, we define:

let rec mod_aux t m n: nat \def

match (leb (S m) n) with

[true \Rightarrow m

| false \Rightarrow

match t with

[O \Rightarrow m

(* if t is large enough this case never happens *)

|(S t1) \Rightarrow mod_aux t1 (m-n) n

]

].

definition mod : nat \to nat \to nat \def

\lambda m,n.mod_aux m m n.

1In a programming language, a typing judgement e : T , should actually be understodd
as asserting that provided e is defined, e has Type T . So, for instance, we may easily
imagine a undefined (divergent) expression inhabiting a void type: at the meta-level, this
would easily lead to logical inconsistencies.

When we define a function having several cases as the previous one, it is
good practice to specify the behavour with a distinct lemma for each possible
branch. In the case of the previous function, we have the following relevant
cases, whose proof is more or less straightforward. The only novelty is the
use of the change tactic, that allows to replace a goal with an equivalent one
(up to convertibility). Sometimes, the heuristic used by the simplify tactic
simplifies too much, and it turns out to be convenient to give the system the
expected transformation in an explicit way.

lemma O_to_mod_aux: \forall m,n. mod_aux O m n = m.

intros.

simplify.elim (leb (S m) n);reflexivity.

qed.

lemma lt_to_mod_aux:

\forall t,m,n. m < n \to mod_aux (S t) m n = m.

intros.

change with

(match (leb (S m) n) with

[true \Rightarrow m

| false \Rightarrow mod_aux t (m-n) n] = m).

rewrite > (le_to_leb_true ? ? H).

reflexivity.

qed.

lemma le_to_mod_aux:

\forall t,m,n.

n \le m \to mod_aux (S t) m n = mod_aux t (m-n) n.

intros.

change with

(match (leb (S m) n) with

[true \Rightarrow m

| false \Rightarrow mod_aux t (m-n) n] = mod_aux t (m-n) n).

apply (leb_elim (S m) n);intro

[apply False_ind.apply (le_to_not_lt ? ? H).apply H1

|reflexivity

]

qed.

In order to understand the use of the previous lemmas, let us try to prove
a simple property of the modulus operation, namely that for any positive n,
m mod n < n.

The proof has the following structure:

theorem lt_mod_aux_m_m:

\forall n. O < n \to

\forall t,m. m \leq t \to (mod_aux t m n) < n.

intros 3.

elim t

[rewrite > O_to_mod_aux.

apply (le_n_O_elim ? H1).

assumption

|elim (decidable_lt m n)

[rewrite > lt_to_mod_aux[assumption|assumption]

|rewrite > le_to_mod_aux

[apply H1.

...

|apply not_lt_to_le.

assumption

]

]

]

qed.

Mimicking the definition of mod_aux, the proof proceeds by induction on
the recursive parameter t. The case t = 0 is closed by O_to_mod_aux; in case
t = Sn1, we distinguish two more case according if m < n or not. In the for-
mer case, we use lt_to_mod_aux while in the latter we use le_to_mod_aux

and the inductive hypothesis H1. The dots correspond to a trivial but for-
mally cumbersome fragment of the proof. Indeed, after applying the induc-
tive hypothesis H1 we are left with the following goal:

n : nat
H : O < n
t : nat
n1 : nat
H1 : ∀m : nat.m ≤ n1→ mod aux n1 m n < n
m : nat
H2 : m ≤ S n1
H3 : m 6< n

m− n ≤ n1

The proof requires several elementary arithmetical results, but is not
particualry informative, so we shall skip it here.

Having defined the modulus, we define

definition divides_b : nat \to nat \to bool \def

\lambda n,m :nat. (eqb (m \mod n) O).

Bibliography

]

29

