
A new type for tactics

A new type for tactics

Andrea Asperti Wilmer Ricciotti Claudio Sacerdoti Coen Enrico Tassi
Department of Computer Science, University of Bologna

asperti@cs.unibo.it, ricciott@cs.unibo.it, sacerdot@cs.unibo.it, tassi@cs.unibo.it

Abstract
The type of tactics in all (procedural) proof assistants is (a variant
of) the one introduced in LCF. We discuss why this is inconvenient
and we propose a new type for tactics that 1) allows the imple-
mentation of more clever tactics; 2) improves the implementation
of declarative languages on top of procedural ones; 3) allows for
better proof structuring; 4) improves proof automation; 5) allows
tactics to rearrange and delay the goals to be proved (e.g. in case of
side conditions or PVS subtyping judgements).

Categories and Subject Descriptors F [4]: 1—Mechanical theo-
rem proving

General Terms tactics, type

Keywords implementation, tactics, proof assistants

1. Overview
A proof assistant is a system that allows the user to interactively
prove a theorem by entering commands, called tactics, that allow
to reduce the initial conjecture to new, simpler ones until all conjec-
tures are trivially proved. Conjectures, which are also called goals,
can be described as sequents, i.e. pairs formed by the list of hy-
potheses to be used and the local thesis to be proved. A proof as-
sistant must provide a data type to represent on-going proofs and a
type for tactics.

Tactics were introduced for the first time in the LCF theorem
prover [Gordon et al. 1979], historically one of the first and one
of the most influential proof assistant ever developed. While every
system implements its own data type for proofs and many alterna-
tive solutions have been proposed, most current systems like HOL-
Light [HOL-Light], NuPRL [NuPRL], MetaPRL [Hickey et al.
2003], Coq [Barras B. et al. 1997, Coq] and Matita 0.x [Asperti
et al. 2007, Matita] still use minor variants of the LCF representa-
tion for tactics. In Section 2 we discuss several limitations of the
LCF representation: some of them have been addressed in most of
the cited systems, but others have not been addressed so far, possi-
bly with the exception of Isabelle [Isabelle]. In Section 3 we pro-
pose and discuss a new type for tactics that solves the previous lim-
itations and that will be used in the next major release of the Matita
interactive theorem prover. We draw conclusions in Section 4.

[Copyright notice will appear here once ’preprint’ option is removed.]

2. LCF tactics and their limitations
The representation of tactics in the LCF proof assistant is well
known and it can be briefly described as follows (see, for instance,
[Gordon et al. 1979], page 210):

type thm
type proof = thm list -> thm
type goal = form list * form
type tactic = goal -> (goal list * proof)

A goal is a pair formed by a context (a list of formulas that are
the hypothesis) and a formula that is the thesis. A tactic can be
applied to just one goal and returns both a list of new goals to
be proved and a “proof”. Intuitively, the tactic reduces the goal
to a possibly empty list of simpler goals and asserts the existence
of a “procedure” to build a proof object (represented in LCF by
the type thm) of the goal from the proofs of the subgoals. This
procedure has type proof, i.e. it is an actual ML function from a
list of proofs (thms) to a proof thm. The thm data type is abstract:
only functions (i.e. tactics) defined in the ML module can directly
construct inhabitants of thm, while functions defined outside the
module can only combine tactics to build proofs. Thus, if the
tactics defined in the module are correct, i.e. they implement sound
logical rules, all the system is granted to be correct. This robustness
property is so attractive that the LCF approach has become pretty
standard.

What is actually stored in the thm data type is unspecified in
the “LCF approach”: it could range from just the proposition that is
proved (if we are only interested in provability) to a proof term that
is a trace of the proof (if we are interested in inspecting and manip-
ulating the proof, e.g. for proof extraction or independent check-
ing). Nevertheless, the thm data type can only represent completed
proofs (hence the name thm that stands for “theorem”). During in-
teractive proof construction, an ongoing proof will be represented
only by an ML function from a list of thms to a thm. Such function
is obtained by composing together the second component of the re-
turn type of the tactics used so far. Being a function, it cannot be
inspected or modified in any way.

The LCF data types we have presented are not sufficient alone to
fully represent the state of the system between tactics application,
i.e. when further input is required to the user. The system needs to
store somewhere the set of goals currently open and the function
that represents the on-going proof. Moreover, since a tactic can be
applied by design only to a single goal, it must also single out one of
the opened goals, called the focused goal, that will be the argument
of the next tactic.

LCF also introduced the notion of tactical, which is an higher-
order tactic. Tacticals are used to build complex, ramified proofs
from given tactics by applying tactics according to some strategy.
Since the first tactic application can open more than one sequent,
during a tactical application we also have the notion of current
goals, which usually are the new goals recently opened by tactics
application during the execution of the tactical. In particular, a

A new type for tactics 1 2009/9/17

tactical must decide the order in which current goals get the focus
and the way goals opened by different focused goals are merged
together in the set of all current goals. Since the LCF types do
not allow to represent these intermediate states, the implementation
of the different systems either record this information in the thm
data type, or leave this information implicit in the control flow data
structures (e.g. the stack) of the code that implements the tacticals.
In his PhD thesis [?], Kirchner has described an elegant monad,
called proof monad, that allows to lift LCF tactics to tactics and
tacticals working on the enriched representation.

2.1 Limitations
We now present several limitations of the LCF data type that have
consequences on the class of tactics that can be implemented, on
the proof language and on the user interface.

(i) Lack of metavariables Most modern proof assistants allow ex-
istentially quantified metavariables to occur in formulae. Metavari-
ables stand for terms that are currently unknown and that will be
instantiated later on, usually by means of unification. They arise in
three different situations. The first one is when they correspond to
implicit, not fully constrained information in a formula, e.g. when
the infix notation “ + ” is used for the operation of an unknown
semi-group in the expression ∀x, y.x + y = y + x, that is inter-
preted as ∀x, y :?G.x +?G y = y +?G x (where ?G is a metavari-
able to be instantiated later). The second one is when the user apply
backwards a deduction rule, like ∃-introduction, but prefers to de-
lay the choice of the witnesses as much as possible, in the spirit
of constraint programming. The third situation generalizes the pre-
vious one and is obtained when a deduction rule, e.g. transitivity,
is matched (or unified) against the goal, and some metavariables
remain free.

Metavariables are not compatible with the LCF data type, since
a metavariable can be instantiated by one tactic and the instantiation
must be applied to every formula in every goal. The latter operation
cannot be performed by the tactic, since it takes in input only the
focused goal and not the set of all goals. The observation is not
novel and can be explicitly found, for instance, in [?] where Paulson
writes “the validation model above does not handle unification.
Goals may not contain unknowns to be instantiated later. As a
consequence, the LCF user must supply an explicit term at each
∃:right step”.

In Section 2.2 we will see how all the major proof assistants
have extended the LCF types to add metavariables. In the mean-
time, we notice how the already cited work by Kirchner [?] fails to
explicitly take metavariables in account.

(ii) All tactics are local A direct consequence of existential
metavariables is that a “wrong” instantiation of one of them can
make a different goal false, hence not provable. As an example,
consider two goals generated by a transitivity law: Γ ` a ≤?x and
Γ `?x ≤ b. Here ?x stands for the intermediate (still unknown)
term c that makes proving Γ ` a ≤ c and Γ ` c ≤ b easier than
proving Γ ` a ≤ b. If a tactic (especially an automatic one) has a
local view over the set of open conjectures (i.e. knows just the goal
Γ ` a ≤?x), it is unlikely to find an instantiation for ?x that makes
proving Γ `?x ≤ b simpler or even possible (think for example
to the trivial but useless solution ?x := a that is obtained proving
the first goal with the reflexive property of ≤). More to the point,
restricting the view of tactics to a single input sequent, gives them
not enough information to detect valid but pointless instantiation of
metavariables. With the exception of Isabelle, all other major proof
assistants that have accommodated metavariable still see a tactic
as a function whose input is just one focused goal and thus does
not allow the implementation of non-local tactics in the spirit of
constraint programming.

A different motivation for introducing non-local tactic is given
by the wish to extend the user-level L-tac language of Coq [Dela-
haye and di Cosmo 1999] with a pattern matching construct over
the set of all goals, in the spirit of what is allowed over contexts.
L-tac allows the lightweight definition in a script file of ad-hoc tac-
tics that match certain configurations and proceed in the proofs ex-
ploiting the domain-knowledge. It would be useful to detect global
configurations in order to look for goals that have certain shapes
(e.g. can be closed using decision procedures or are more likely to
be false or are all instances of a more general conjecture).

(iii) No partial code extraction Opaque proofs (i.e. ML func-
tions) prevent many interesting elaborations the system can per-
form even if they are incomplete. For instance, proofs made in con-
structive logic do have an algorithmic content, that is hard to grasp
without a proper cleanup procedure (that essentially amounts to the
erasure of non computationally relevant parts). This procedure can,
at some extent, be performed even on incomplete proofs, giving the
user a feedback on the extracted code at early stages of the proof
development. This is important if the user is looking for a particular
implementation (i.e. an efficient one) of the specification.

(iv) On-going proofs cannot be rendered Similarly to the lack of
partial code extraction, it is impossible to render a proof in progress
to the user, e.g. as a derivation tree (or DAG) or in pseudo-natural
language.

(v) Unstructured scripts Most modern interactive theorem provers
do offer a user interface based on a textual script, input by the user,
that is step-by-step checked by the system. The checked part is
locked: no edit can be performed on that part without retracting the
checked commands (i.e. an undo operation affecting the status of
the ongoing proof is performed).

This interaction paradigm suffers the big step execution seman-
tics of LCF tacticals, that are still today the primary tool to combine
together tactics and give a structure to proof scripts. The big step
semantics of tacticals is forced by their type. Being higher-order
tactics, they can be executed only when all their arguments are pro-
vided. Or better, there is no semantics for the tactical if some of its
arguments are unknown.

For example, when a tactic opens heterogeneous goals the user
may want to use the branching tactical ([... | ... | ...])
to run appropriate tactics on every branch. Since it is unlikely that
he is able to fill all the blanks (i.e. ...) in a row, he is forced by the
system to continuously refine its compound command, execute it to
see the result, and retract to able to further refine it. This loop is not
only annoying, requiring additional key-presses or mouse clicks: it
also forces the user to type the refined command in a blind way,
since in order to edit the script he must ask the system to retract the
last command, and this operation also changes the displayed proof
status. Thus the user has to type the next command step looking at
the goal in the state it was many steps before.

Structuring the proof script makes it more easy to fix when
it breaks, since the structure of the proof is more explicit. For
example failures are detected early since new goals coming from
the application of modified lemmas pop up in the right part of the
proof (i.e. they are no accidentally delayed). If the user interface
refrains the user to give a proper structure to the proof script, it is
unlikely that he would be happy to perform a major redesign of the
axioms or basic definitions he is using, since this would break proof
scripts, and fixing them would be a very expensive operation.

Another strong point against a big step evaluation semantics
of operators to combine commands and structure scripts is that,
unless the interaction language is declarative, just reading the proof
script is not enough to re-read a proof: single commands have
to be executed step-by-step to understand what is going on. In
system equipped with standard (big-step executed) tacticals, what

A new type for tactics 2 2009/9/17

is usually done is (in the rare case in which the proof is structured)
to de-structure the proof on the fly, modifying the proof script
in such a way that only a part of every compound command is
executed. Re-reading a proof script is not only necessary during
talks or demos, but is the main activity a team member performs
when fixing a script he is not the author of (i.e. that he is not
supposed to deeply understand). Given that the cost of writing a
formal, mechanically checkable, proof is very high, we believe that
every design choice that makes collaboration on the formalization
activity harder is to be avoided.

The execution of a partially given tactical can be performed
if a semantics is given to a de-structured language for tacticals
as in [Sacerdoti Coen et al. 2006]. For example, a data structure
(similar to the stack that is used to execute functions in a regular
programming language) can be explicitly adopted to allow the user
to type just the command ‘[’ and see its result, then use a tactic,
then move to the following goal typing the command ‘|’ and after
he is done with the proof branches type the command ‘]’.

(vi) Poor implementation of declarative languages The lan-
guages of proof assistants are often classified between declarative
and procedural ones.

In procedural languages, the user uses tactics that specify how
the goal must be manipulated, but not what is expected from the
manipulation. Intuitively, it corresponds to the information that
remains in a derivation tree by erasing from the premises of each
rule all (sub)-formulas that also occur in the rule conclusion. Most
tactics for procedural languages are used to find proofs in a top-
down way, since the amount of information that can be omitted is
maximized in this way. However, tactics for bottom-up reasoning
(like tactics to generate logical cuts) can also be present, but are
usually more verbose.

In declarative languages, the user uses commands (that we iden-
tify with tactics) to build proofs by specifying what is proved at
each step, usually omitting how it is proved. Automation supplies
the missing justifications. Intuitively, it corresponds to the informa-
tion that remains in a derivation tree when the name of every rule is
omitted and only the tree structure and the formula are kept. Most
tactics for declarative languages are used to describe proofs in a
bottom-up way. Not every declarative language has tactics for top-
down proof steps, but at least case analysis and induction are better
captured in this way.

A long standing line of research [Harrison 1996, Wiedijk 2003]
has tried to implement declarative languages, i.e. declarative tac-
tics, on top of procedural ones. However, the results so far have
never been completely satisfactory for two different reasons.

The first has to do with goal selection: when the user needs to
prove multiple goals (e.g. the branches of a proof by induction, or
the components of a conjuction), declarative languages like Isar [?]
allow to dynamically select the goal to be proved, or even to prove
something that is matched with the opened goal set only later, and
possibly up to some easy deductions. Procedural tactics, together
with the LCF limitation of just one focused goal, do not allow to
implement properly this behaviour. Note that this is exactly the type
of control over the proof history that tinycals allow.

The second has to do with information flow: in languages like
Isar and Mizar a forward reasoning tactic can prove some fact and
at the same time schedule it for usage by the tactic that ends the
subproof. The latter tactic can only use the facts explicitly listed by
the user in addition to those accumulated by previous tactics. The
LCF data type does not allow to pass information around from one
tactic to the next ones.

(vii) Unclassified goals For a formal system, every conjecture is
the same: a set of hypotheses and a conclusion. This is reflected by
the LCF type for tactics, where the only distinction between newly

generated goals is their position in the output list. For example,
when we proceed by induction, we know that some of the new
conjectures will need the application of the inductive hypothesis
to be solved, while other goals do not. This information is lost in
the coarse LCF tactic type, but could be exploited by the system,
for example, automatically running procedures like rippling on all
inductive cases.

Another example where some new goals deserve a special treat-
ment is generalized rewriting (rewriting with setoids). In that case,
a rewriting step generates goals of two kinds: the rewritten conclu-
sion, and a proof that the context under which the rewriting took
place is made of morphisms. The latter class of goals can usually
be solved automatically, once the user proved that every elementary
functional symbol is a morphism.

Some interactive provers, most notably PVS and ACL2, collect
sets of side conditions (like subtyping judgements) the user is
not expected to immediately solve. Most of these side conditions
become trivial when the user enriches the context with additional
facts or assumptions and are thus temporarily put apart by these
systems.

2.2 Tactics in current proof assistants
Coq adopts a type for tactics which is very close to the LCF one.
Here sigma is the type for metavariables indexed by the type of
focused goals (i.e. a tactic runs on a goal and generates a list of
new ones). The validation type is opaque (being a function) and
is aimed at producing a proof-tree like representation of the proof.

type tactic =
goal sigma -> (goal list sigma * validation)

and validation = (proof_tree list -> proof_tree)

The proof tree type is complicated by the fact that Coq implements
metavariables, thus a proof may be incomplete. Note the number
of open subgoals and the optionally applied rule equipped with the
list of sub-trees.

type proof_tree = {
open_subgoals : int;
goal : goal;
ref : (rule * proof_tree list) option }

and rule = ...

Coq solves the limitation (i) but not (ii), (v), (vi). Limitations
(iii), (iv) and (vii) are solved by working on additional data struc-
tures.

Isabelle-Pure adopts the most complex, but flexible, type for
tactics, which is quite far away from the LCF data type since a
“proof context” for the whole proof is passed around. A small part
of the complexity is needed to cope with the logical-framework
approach (i.e. it is abstracted over the theory selected by the user).

datatype thm = Thm of
deriv * (*derivation*)
{thy_ref: theory_ref, (*reference to theory*)
tags: Properties.T, (*additional annotations*)
maxidx: int, (*max idx of Var TVar*)
shyps: sort OrdList.T, (*sort hypotheses*)
hyps: term OrdList.T, (*hypotheses*)
tpairs: (term * term) list, (*flex-flex pairs*)
prop: term} (*conclusion*)

and deriv = Deriv of
{max_promise: serial,
open_promises: (serial * thm future) OrdList.T,
promises: (serial * thm future) OrdList.T,
body: Pt.proof_body};

A new type for tactics 3 2009/9/17

type conv = cterm -> thm;

type tactic = thm -> thm Seq.seq

Note that a tactic returns a (possibly infinite) sequence of (not yet
proved) theorems. This allows an elegant and lightweight imple-
mentation of backtracking, for example associated to impossibility
of finding a most general unifier but the possibility of enumerating
all second-order ones. Also note that tactics do not take in input a
focused goal: every tactic must know which goal(s) to work on.

Isabelle solves the limitation (i), (ii), (iii), (iv) and (vi). Limita-
tion (v), (vii) are solved by working on additional data structures.

HOL-Light extends the LCF type for tactics keeping track of
(meta)variables instantiations. Note that a tactic is allowed to gen-
erate new variables (the term list component of the goal state).

type thm =
Sequent of (term list * term) (* hyps, concl *)

type justification =
instantiation -> thm list -> thm

type goalstate =
(term list * instantiation)
* goal list * justification

type tactic = goal -> goalstate

HOL-Light solves (i) but not (ii), (iii), (iv), (v), (vi), (vii).

MetaPRL adopts a concrete representation of proof steps (here
called ext_just) but is more conservative about tactics input, that
is a single sequent as in LCF.

type tactic =
sentinal -> msequent -> msequent list * ext_just

type msequent_so_vars =
SOVarsDelayed | SOVars of SymbolSet.t

type msequent = {
mseq_goal : term;
mseq_assums : term list;
mseq_so_vars : msequent_so_vars ref;

}

type ext_just =
| RuleJust of ...
| RewriteJust of ...
...

MetaPRL solves (i), (iii), (iv), (vii) but not (ii), (v), (vi).

Matita 0.x adopts a type similar to the LCF one, but the proof
object proof for the whole proof is always passed around and can
be concretely inspected. Metavariable instantiation is done lazily by
recording the instantiation in the substitution data type, which
is a map from instantiated metavariables to their values. Tinycals
are implemented by means of an additional data structure, called
context stack [Sacerdoti Coen et al. 2006], which is not accessible
by tactics. Thus tinycals are not tactics and the proof object proof
does not capture the whole proof status.

type proof =
uri option * metasenv * substitution *

term Lazy.t * term * attribute list
type goal = int
type status = proof * goal

type tactic
val mk_tactic: (status -> proof * goal list) -> tactic

Matita 0.x solves (i), (iii) and (iv) but not (ii), (vi) and (vii). It
also solves (v) thanks to additional data structures.

3. A new type for tactics
We propose a new type for tactics that is a function from and to a
tac_status defined as follows:

type proof_object
type metasenv = goal list

type proof_status = metasenv * proof_object

type tac_status = {
pstatus : proof_status;
gstatus : context_stack;

}

type tactic = tac_status -> tac_status

A tac_status is made of a proof status pstatus and a context
stack gstatus. The proof status component carries a (partial) proof
object made of a set of open goals and existentially quantified
metavariables (metasenv), and a data type for partial proofs. In
our proposal, goals and existentially quantified metavariables are
handled uniformly, for instance by showing all of them to the user
as goals and by allowing tactics to either instantiate a metavariable
(with a term) or a goal (with a proof).

The context stack is meant to keep track of proof structuring
commands, like reordering, focusing, postponing or tagging goal
sets. The context_stack data structure was introduced in [Sacer-
doti Coen et al. 2006] to give a semantics to tinycals, which are a
syntactically de-structured version of some LCF tacticals equipped
with a small step semantics. The context stack that equips the proof
object plays the same role of the indexed proof tree in [?].

The major difference of our type for tactics with the standard
LCF one is that the input is no longer a single goal, but a global
view of the ongoing proof which can be altered. Moreover, it is
possible to focus simultaneously on a set of goals. For example
a tactic could make no progress (in terms of closing open goals)
but it could change the focus to the set of goals in which an
existentially quantified metavariable occurs; then another tactic
performing automatic proof search could be run on the focused goal
set to find an instantiation for the metavariable that allows to solve
all goals simultaneously.

We describe now an implementation of the context_stack
which is both a simplification and an extension of the one in [Sac-
erdoti Coen et al. 2006] and that allows to implement the most in-
teresting tinycals described there. The code excepts are in (pseudo)
OCaml syntax.

type task =
int * [‘Open | ‘Closed] * goal * [> ‘No_tag]

type context = task list * task list
type context_stack = context list

The context stack is a stack of contexts, which are pairs of
focused (Γ) and locally postponed (τ) tasks. A task is a numbered
and tagged goal that can be either open or already closed. The tag
is used to associate arbitrarily information to a goal, e.g. to mark
it for automation. The number will be discussed in a while. A goal
can be present in the stack only once.

The intended semantics of the stack is that a tactic should
normally act only on the focused task in the context at the top of
the stack, replacing the focused tasks with the new tasks opened by
the tactic.

This behaviour is illustrated by the following pseudo-tactic:

A new type for tactics 4 2009/9/17

let pure_tac status =
let focused, t, s =
match status.gstatus with
| [] -> assert false
| (g, t) :: s -> map (fun _,_,x,_ -> x) g, t, s

in
let newpstatus, newgoals =

do_something_useful status.pstatus focused
in
let g =
map (fun x -> 0, ‘Open, x, ‘No_tag) newgoals

in
{ pstatus = newpstatus; gstatus = (g, t) :: s }

The initial stack is the following, where g is the original goal
stated by the user.

[[0, ‘Open, g, ‘No_tag], []]

A new context is pushed on the stack by the branching tinycal
([) that is used in order to be able to re-focus only on subsets of
the focused tasks Γo, for instance to apply different tactics to each
goal. When the branching tinycal is used, the tasks in Γo are re-
numbered with their position in the list Γo. Initially, the new stack
is made of just one focused task, which was the first previously
focused one (i.e. the task in Γo numbered with 1). The new focused
goal is removed from Γo.

let branch_tac status =
let new_gstatus =
match status.gstatus with
| [] -> assert false
| (g, t) :: s ->

match init_pos g with (* numbers goals *)
| [] | [_] -> fail
| task :: tl -> ([task], []) :: (tl, t) :: s

in
{ status with gstatus = new_gstatus }

The user can stop working on that task and move to the next one
using the shift tinycal (|) that moves what is currently focused (i.e.
is in Γ) on the postponed list τ at the top of the stack, and moves the
next previously focused task in Γo to Γ. Alternatively, he can use
the focusing tinycal (n_1,\ldots,n_m:) to stop working on the
currently focused tasks and focusing on the task in Γ0 numbered
by n1, . . . , nm. A shortcut is the remaining tinycal (*:) that focus
on all remaining tasks in Γo.

let shift_tac status =
let new_gstatus =
match status.gstatus with
| (g, t) :: (g’, t’) :: s ->

(match g’ with
| [] -> fail
| loc :: loc_tl ->

(([loc], t ∪ filter_open g ∪ k)
:: (loc_tl, t’) :: s))

| _ -> fail
in
status with gstatus = new_gstatus

let pos_tac i_s status =
let new_gstatus =
match status.gstatus with
| [] -> assert false
| ([loc], t) :: (g’, t’) :: s

when is_fresh loc ->
let l_js =

filter (fun i,_ -> i ∈ i_s) ([loc] ∪ g’)
in
((l_js, t)

:: (([loc] ∪ g’) \ l_js, t’) :: s)
| _ -> fail

in
status with gstatus = new_gstatus

let wildcard_tac status =
let new_gstatus =

match status.gstatus with
| [] -> assert false
| ([g] , t) :: (g’, t’) :: s ->

(([g] ∪ g’, t) :: ([], t’) :: s)
| _ -> fail

in
status with gstatus = new_gstatus

The merge tinycal (]) pops the context at the top of the stack by
appending all tasks in the popped context to the focused list Γ at
the new top of the stack.

let merge_tac status =
let new_gstatus =

match status.gstatus with
| [] -> assert false
| (g, t) :: (g’, t’) :: s ->

((t ∪ filter_open g ∪ g’ ∪ k, t’) :: s)
| _ -> fail

in
status with gstatus = new_gstatus

Note that the composition of ‘[’, multiple ‘|’s and ‘]’ is seman-
tically equivalent to the “thens” LCF tactical.

We have not discussed so far the use of Closed tasks. Since
we use goals (hence tasks) to represent also metavariables, a tactic
can instantiate a metavariable which is not currently focused and
thus can be anywhere in the context stack. In this case, we mark
the task as Closed so that, when the user will later focus on it, he
will be aware that the goal has already been automatically closed
by side effects. The only tactic which works on closed tasks is the
skip tinycal that just removes the task by leaving in the script an
acknowledgement (the skip occurrence) of the automatic choice.

let skip_tac status =
let new_gstatus =
match status.gstatus with
| [] -> assert false
| (gl, t) :: s ->

let gl = map (fun _,_,x,_ -> x) gl in
if exists ((=) ‘Open) gl then fail
else ([], t) :: s

in
{ status with gstatus = new_gstatus }

Other tinycals described in [Sacerdoti Coen et al. 2006] require
a slightly more elaborate context stack. The most interesting ones
are the pair focus/unfocus that allows to focus on an arbitrary
subset of the goals, whereas the focusing tinycals we have de-
scribed only allows to focus on a subset of the tasks that were fo-
cused when [was most recently used.

3.1 LCF-like tactics
Tactics presented so far can freely manipulate the context stack.
For instance, tinycals are just tactics that change the stack without
changing the goals. However, the most frequent case for a tactic is
still that acts locally on a single focused goal, and does not care

A new type for tactics 5 2009/9/17

about focusing or postponement of the generated goals. For this
reason we introduce a simplified type that corresponds to the LCF
type extended to care for metavariables.

type lcf_tactic =
proof_status -> goal -> proof_status

An lcf_tactic takes as input a proof status and the focused
goal (that must belong to the proof status) and returns a new proof
status. The list of new goals can be computed by comparing the
metasenv in input and in output. Passing the metasenv (and proof
object) around allows the tactic to instantiate metavariables all over
the proof. The justification for the tactic is recorded in the proof
object. Since we put no requirements on the latter, we are free to
implement it either as an ML function or as a concrete, inspectable,
data structure like a λ-term if our system is based on the Curry-
Howard isomorphism.

An lcf_tactic can be lifted to a tactic by applying it in
sequence to each focused goal, collecting all the opened goals and
turning all of them into the new focused goals on top of the stack.
This is implemented by the distribute_tac tactic:

(* distribute_tac: lcf_tactic -> tactic *)
let distribute_tac tac status =
match status.gstatus with
| [] -> assert false
| (g, t) :: s ->

(* aux [pstatus] [open goals] [close goals] *)
let rec aux s go gc =
function
| [] -> s, go, gc
| (_,switch,n,_) :: loc_tl ->

let s, go, gc =
(* a metavariable could have been closed
* by side effect *)
if n ∈ gc then s, go, gc
else
let sn = tac s n in
let go’,gc’ = compare_statuses s sn in
sn,((go ∪ [n]) \ gc’) ∪ go’,gc ∪ gc’

in
aux s go gc loc_tl

in
let s0, go0, gc0 = status.pstatus, [], [] in
let sn, gon, gcn = aux s0 go0 gc0 g in
(* deep_close set all instantiated metavariables
* to ‘Close *)
let stack = (gon, t \ gcn) :: deep_close gcn s
in

gstatus = stack; pstatus = sn

When implementing a lcf_tactic, it is sometimes useful to
call a tactic on one goal but, because of lack of the context
stack, an lcf_tactic can only directly call another lcf_tactic.
Therefore, we introduce the exec function to turn a tactic into
an lcf_tactic by equipping the proof status with a singleton
context_stack and by forgetting the returned context stack:

(* exec: tactic -> lcf_tactic *)
let exec tac pstatus g =

let stack = [[0, ‘Open, g, ‘No_tag], []] in
let status =
tac { gstatus = stack ; pstatus = pstatus }
in
status.pstatus

The functions exec and distribute_tac form a retraction
pair: for each proof status s and goal i,

exec (distribute_tac lcf_tac) s g = lcf_tac s g

They are inverse functions when applied to just one focused
goal or alternatively when restricted to LCF-like tactics, i.e. tactics
that ignore the context stack and that they behave in the same way
when applied at once to a set of focused goals and to each goal
in turn. Thus, we can provide a semantic preserving embedding
of any LCF tactic into our new data type for tactics. Moreover,
as proved in [Sacerdoti Coen et al. 2006], we can also provide a
semantic preserving embedding of all LCF tacticals. In the current
presentation, this is achieved by means of the block_tac that
allows to execute a list of tactics:

let block_tac l status =
fold_left (fun status tac -> tac status) status l

For instance, the LCF tactical thens is simply implemented as:

let thens_tac t tl =
block_tac (t :: ‘[‘ :: separate ‘|‘ tl @ ‘]‘)

where separate ‘|‘ [t_1 ; ... ; t_n] is
[t_1 ; ‘|‘ ; ... ; ‘|‘ ; t_n].

4. Conclusions
We presented a new, simple data type for tactics that extends the
LCF data type and that admits a semantic preserving embedding
of LCF tactics into it. In Sect. 2 we discussed several limitations
of LCF tactics that are overcome in our solution. We review them
here:

Lack of metavariables In LCF, a tactic only takes in input a single
focused goal and thus cannot change the other ones by side effects.
In our proposal the input and output types of a tactic include the
proof status, allowing the instantiation of a metavariable all over
the proof status.

As a side effect, depending on the actual implementation of the
proof status, it is possible to implement tactics that alter the proof
status not only by instantiating metavariables, but also by changing
sub-terms or sub-proof-objects (e.g. to improve a proof object that
was found by an automatic tactic or to share duplicated parts of
a proof). This behaviour can easily be prevented when the proof
object is an abstract data type that only provides the metavariable
instantiation method.

All tactics are local Since our tactics are applied to the whole
proof status, they can reason globally on it, e.g. by using constraint
programming techniques to instantiate metavariables constrained
by multiple goals. The context stack also provides a list of focused
goals tactics are supposed to act on, favouring a kind of reasoning
that is intermediate between the global one and the local one of
LCF. As in the previous case, abstract data types can be used to
prevent global reasoning in favour of the intermediate one.

No partial code extraction The proof of a goal is not required to
be an ML function as in LCF and thus it can be implemented with
a concrete type of λ-terms to allow code extraction. The λ-calculus
needs to be extended with metavariables in the spirit of [Muoz
1997, Geuvers and Jojgov 2002] to allow the representation of
partial proofs and code extraction from them.

On-going proofs cannot be rendered In the same way, it is now
possible to render the proof object or to analyze it in alternative
ways. For instance, it is possible to data mine the proof object in
search of duplicate sub-proofs.

Unstructured scripts In [Sacerdoti Coen et al. 2006] we intro-
duced tinycals with the precise aim of improving the user interface
of proof assistants by letting the user effectively write structured

A new type for tactics 6 2009/9/17

scripts. There, tinycals were not a special kind of tactics, but ad-
ditional commands to be interleaved with tactics. In this paper we
present a uniform data type for tactics that blurs the distinction be-
tween tactics and tinycals, allowing the formers to manipulate the
context stack (as tinycals do).

Poor implementation of declarative languages An application of
the previous observation is given by the implementation of declara-
tive commands to perform case analysis or induction. Suppose that
we want to implement a language with the following commands
(tactics):

by induction on T we want to prove P
by cases on T we want to prove P
case X (arg1: T1) ... (argn: Tn):
by induction hypothesis we know P (H)

A proof by cases or induction is started using one of the first two
tactics and continues by switching in turn to each case using the
third tactic, as in the following example:

by induction on n we want to prove n + 0 = n
case O:

....
case S (m: nat):

by induction hypothesis we know m+0 = m (IH)
...

The user should be free to process the cases in any order. Thus
the case tactic should first focus on the goal that corresponds to
the name of the constructor used. However, since an LCF tactic
can only work on the focused goal, focusing must be performed
outside the tactic and the case command cannot be implemented
as a tactic and thus it cannot be easily re-used inside other tactics.
In our approach, the by cases/induction tactics open several
new goals that are all focused at once and the case tactic simply
works on the wanted case only by focusing on it.

Moreover, the semantics of declarative tactics are often based on
a working set of justifications that are incrementally accumulated
to prove the thesis. E.g. in the Isar-like declarative script

n = 2 * m by H
moreover

m * 2 = x + 1 by K
hence

n = x + 1 by sym_times

the third inference is justified by the first two propositions and
sym_times. Thus the semantics of moreover and hence is that
of accumulating the justifications in some set which must be passed
around in the proof status. The LCF data type for tactics does not al-
low to implement this set, whereas in our proposal the proof object
can store any information. In particular, this kind of information is
better stored in the context stack, e.g. in the form of tags.

Unclassified goals Goals are freely tagged in the context stack
to attach information to them. A typical application consists in
marking proofs of side conditions that the system should try to
solve automatically, for instance by resorting to a database of ad-
hoc lemmas as in the implementation of Type Classes in Coq by
Sozeau [Sozeau and Oury 2008].

Our data type, while remaining quite simple, is general enough
to accommodate all the information stored by other systems in their
data types for tactics and it is strictly more general than the one of
all other systems, with the exception of Isabelle/Pure. On the one
hand, the latter is very similar to (an instance) of ours, since a tactic
maps thms (i.e. a proof status) to thms, like in our proposal, and the
information stored in a thm roughly comprises the one we use. On

the other hand, an Isabelle/Pure tactic returns a sequence of thms
in order to capture the non determinism of some tactics. The same
solution can be adopted with minor effort even in our proposal.

The forthcoming major release of Matita (1.x) is based on the
type for tactics described in this paper with minor differences.
The context_stack is slightly more complex as in [Sacerdoti
Coen et al. 2006] to support a larger number of tinycals. For the
proof_object we use the Calculus of (co)Inductive Construc-
tions with metavariables as described in [?]. The most interesting
example of non local tactic is a prolog style proof search proce-
dure where metavariables are extensively used to delay instantia-
tions and backtracking is performed w.r.t. the whole set of goals a
metavariable occurs in (see [Asperti and Tassi 2009]). A declara-
tive language of tactics is built on top of the procedural one thanks
to the possibility of dynamically focusing on goals; it also benefits
of goal tagging.

Another recent attempt to provide a general data type for tactics
is the one in Kirchner’s PhD thesis [?] where the author introduces
a proof monad on top of a generic data type for indexed proof trees,
i.e. proof trees where goals are hierarchically structured and an
index, which is a pointer in the tree, is used to specify the set of
focused goal.

Kirchner’s indexed proof trees play the same role of our context
stack, with several differences. The first one is that Kirchner does
not consider metavariables, that we assimilate to proof goals, and
tactics with side effects. The second one is that it puts severe
constraints on the set of focused goals, whereas, in the version
of the context stack we describe in [Sacerdoti Coen et al. 2006]
and we implemented in Matita, focusing is unconstrained. A final
difference is the lack of goals tagging in indexed proof trees.

Kirchner’s proof monad adds to the indexed proof trees addi-
tional information about the outcome of tactics application. In par-
ticular, a lifted tactic can either fail, close the goal or open new
subgoals. Making this information explicit allows to give a compo-
sitional semantics to the LCF tacticals that deal with backtracking,
in the same spirit as our context tree was used to give a composi-
tional semantics to the LCF tacticals that we turned into tinycals.
We claim that, in a system without metavariables and side effects,
Kirchner’s proof monad can be applied to our context proof trees
with the same benefits. The study of the combination of the proof
monad with our proposal in the case of metavariables and the de-
velopment of appropriates tinycals that benefit from the obtained
data type are left as future work.

Finding in the literature precise comparisons and discussions
about the benefits of data types used in proof assistant implemen-
tation is very hard and a common misconception is that the LCF
data type is still largely adopted in its original form. In reality, the
LCF data type suffers from several limitations and some of them
have been lifted in different ways by the existing systems. While
our contribution is not groundbreaking, it paves the way to more
detailed comparisons of the pros and cons of the different imple-
mentations and it provides a reference general data type for future
implementations.

References
Special Issue on Interactive Theorem Proving and Verification. Sadhana,

34(1), 2009.
Andrea Asperti and Enrico Tassi. An interactive driver for goal directed

proof strategies. In Proc. of User Interfaces for Theorem Provers 2008.
Montreal, CA, August 2008, 2009. To be published.

Andrea Asperti, Claudio Sacerdoti Coen, Enrico Tassi, and Stefano Zac-
chiroli. User interaction with the Matita proof assistant. Journal of
Automated Reasoning, 39(2):109–139, 2007.

Barras B., Boutin S., Cornes C., Courant J., Filliatre J. C., Giménez E.,
Herbelin H., Huet G., Munoz C., Murthy C., Parent C., Paulin-Mohring

A new type for tactics 7 2009/9/17

C., Saibi A., and Werner B. The Coq Proof Assistant Reference Manual
: Version 6.1. Technical Report RT-0203, Inria (Institut National de
Recherche en Informatique et en Automatique), France, 1997.

Coq. The Coq proof-assistant.
http://coq.inria.fr, 2009.

David Delahaye and Roberto di Cosmo. Information retrieval in a Coq proof
library using type isomorphisms. In Proceedings of TYPES 99, volume
Lecture Notes in Computer Science. Springer-Verlag, 1999.

Herman Geuvers and Gueorgui I. Jojgov. Open proofs and open terms:
A basis for interactive logic. In J. Bradfield, editor, Computer Science
Logic: 16th International Workshop, CSL 2002, volume 2471 of Lecture
Notes in Computer Science, pages 537–552. Springer-Verlag, January
2002.

Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Edin-
burgh LCF: a mechanised logic of computation. volume 78 of Lecture
Notes in Computer Science. Springer-Verlag, 1979.

John Harrison. A Mizar Mode for HOL. In J. von Wright, J. Grundy,
and J. Harrison, editors, Theorem Proving in Higher Order Logics: 9th
International Conference, TPHOLs’96, volume 1125 of LNCS, pages
203–220. Springer-Verlag, 1996.

Jason Hickey, Aleksey Nogin, Robert L. Constable, Brian E. Aydemir,
Eli Barzilay, Yegor Bryukhov, Richard Eaton, Adam Granicz, Alexei
Kopylov, Christoph Kreitz, Vladimir N. Krupski, Lori Lorigo, Stephan
Schmitt, Carl Witty, , and Xin Yu. Metaprl — a modular logical envi-
ronment. In David Basin and Burkhart Wolff, editors, TPHOLs 2003,
volume 2758 of Lecture Notes in Computer Science, pages 287–303.
Springer-Verlag, 2003.

HOL-Light. The HOL Light proof-assistant.
http://www.cl.cam.ac.uk/users/jrh/hol-light/.

Isabelle. The Isabelle proof-assistant.
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/.

Florent Kirchner and César Muñoz. Pvs#: Streamlined tacticals for pvs.
Electr. Notes Theor. Comput. Sci., 174(11):47–58, 2007.

Matita. The Matita interactive theorem prover.
http://matita.cs.unibo.it.

Csar Muoz. A Calculus of Substitutions for Incomplete-Proof Representa-
tion in Type Theory. PhD thesis, INRIA, November 1997.

NuPRL. The NuPRL proof-assistant.
http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html.

Claudio Sacerdoti Coen, Enrico Tassi, and Stefano Zacchiroli. Tinycals:
step by step tacticals. In Proceedings of User Interface for Theorem
Provers 2006, volume 174 of Electronic Notes in Theoretical Computer
Science, pages 125–142. Elsevier Science, 2006.

Matthieu Sozeau and Nicolas Oury. First-class type classes. In TPHOLs,
pages 278–293, 2008.

Freek Wiedijk. Mmode, a mizar mode for the proof assistant Coq. Technical
Report NIII-R0333, University of Nijmegen, 2003.

A new type for tactics 8 2009/9/17

