1 (* Copyright (C) 2003-2005, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
26 (***************************************************************************)
30 (* Andrea Asperti <asperti@cs.unibo.it> *)
33 (***************************************************************************)
37 module P = Mpresentation
41 let p_mtr a b = Mpresentation.Mtr(a,b)
42 let p_mtd a b = Mpresentation.Mtd(a,b)
43 let p_mtable a b = Mpresentation.Mtable(a,b)
44 let p_mtext a b = Mpresentation.Mtext(a,b)
45 let p_mi a b = Mpresentation.Mi(a,b)
46 let p_mo a b = Mpresentation.Mo(a,b)
47 let p_mrow a b = Mpresentation.Mrow(a,b)
48 let p_mphantom a b = Mpresentation.Mphantom(a,b)
53 split (n-1) (List.tl l) in
56 let get_xref = function
58 | `Hypothesis d -> d.Con.dec_id
59 | `Proof p -> p.Con.proof_id
60 | `Definition d -> d.Con.def_id
61 | `Joint jo -> jo.Con.joint_id
64 RenderingAttrs.spacing_attributes `BoxML
65 @ RenderingAttrs.indent_attributes `BoxML
67 let make_row items concl =
68 B.b_hv hv_attrs (items @ [ concl ])
71 B.b_v attrs [B.b_h [] items; B.b_indent concl]
73 B.b_h attrs (items@[B.b_space; concl]) *)
75 let make_concl ?(attrs=[]) verb concl =
76 B.b_hv (hv_attrs @ attrs) [ B.b_kw verb; concl ]
79 B.b_v attrs [ B.b_kw verb; B.b_indent concl]
81 B.b_h attrs [ B.b_kw verb; B.b_space; concl ] *)
83 let make_args_for_apply term2pres args =
84 let make_arg_for_apply is_first arg row =
87 Con.Aux n -> assert false
90 (match prem.Con.premise_binder with
93 (B.b_object (P.Mi ([], name)))::row
96 Some "helm", "xref", lemma.Con.lemma_id;
97 Some "xlink", "href", lemma.Con.lemma_uri ]
99 (B.b_object (P.Mi(lemma_attrs,lemma.Con.lemma_name)))::row
103 else (B.b_object (P.Mi([],"_")))::row
106 (B.b_object (P.Mi([],"_")))::row
108 if is_first then res else B.skip::res
112 make_arg_for_apply true hd
113 (List.fold_right (make_arg_for_apply false) tl [])
116 let get_name = function
120 let add_xref id = function
121 | B.Text (attrs, t) -> B.Text (((Some "helm", "xref", id) :: attrs), t)
122 | _ -> assert false (* TODO, add_xref is meaningful for all boxes *)
124 let rec justification term2pres p =
125 if ((p.Con.proof_conclude.Con.conclude_method = "Exact") or
126 ((p.Con.proof_context = []) &
127 (p.Con.proof_apply_context = []) &
128 (p.Con.proof_conclude.Con.conclude_method = "Apply"))) then
130 make_args_for_apply term2pres p.Con.proof_conclude.Con.conclude_args in
132 (B.b_kw "by")::B.b_space::
133 B.Text([],"(")::pres_args@[B.Text([],")")]), None
135 Some (B.b_toggle [B.b_kw "proof";proof2pres term2pres p])
137 and proof2pres term2pres p =
138 let rec proof2pres p =
143 | `Hypothesis _ -> true
145 ((List.filter is_decl p.Con.proof_context) != []) in
146 let omit_conclusion = (not indent) && (p.Con.proof_context != []) in
148 (match p.Con.proof_conclude.Con.conclude_conclusion with
150 | Some t -> Some (term2pres t)) in
153 conclude2pres p.Con.proof_conclude indent omit_conclusion in
155 acontext2pres p.Con.proof_apply_context presconclude indent in
156 context2pres p.Con.proof_context presacontext in
157 match p.Con.proof_name with
165 make_concl ~attrs:[ Some "helm", "xref", p.Con.proof_id ]
167 B.b_toggle [ concl; body ]
170 [B.Text ([],"(" ^ name ^ ")");
173 and context2pres c continuation =
174 (* we generate a subtable for each context element, for selection
176 The table generated by the head-element does not have an xref;
177 the whole context-proof is already selectable *)
183 (fun ce continuation ->
184 let xref = get_xref ce in
185 B.V([Some "helm", "xref", xref ],
186 [B.H([Some "helm", "xref", "ce_"^xref],
187 [ce2pres_in_proof_context_element ce]);
188 continuation])) tl continuation in
189 let hd_xref= get_xref hd in
191 [B.H([Some "helm", "xref", "ce_"^hd_xref],
192 [ce2pres_in_proof_context_element hd]);
195 and ce2pres_in_joint_context_element = function
196 | `Inductive _ -> assert false (* TODO *)
197 | (`Declaration _) as x -> ce2pres x
198 | (`Hypothesis _) as x -> ce2pres x
199 | (`Proof _) as x -> ce2pres x
200 | (`Definition _) as x -> ce2pres x
202 and ce2pres_in_proof_context_element = function
204 B.H ([],(List.map ce2pres_in_joint_context_element ho.Content.joint_defs))
205 | (`Declaration _) as x -> ce2pres x
206 | (`Hypothesis _) as x -> ce2pres x
207 | (`Proof _) as x -> ce2pres x
208 | (`Definition _) as x -> ce2pres x
213 let ty = term2pres d.Con.dec_type in
217 B.Object ([], P.Mi([],get_name d.Con.dec_name));
221 let ty = term2pres h.Con.dec_type in
226 B.Object ([], P.Mi ([],get_name h.Con.dec_name));
233 let term = term2pres d.Con.def_term in
235 [ B.b_kw "Let"; B.b_space;
236 B.Object ([], P.Mi([],get_name d.Con.def_name));
240 and acontext2pres ac continuation indent =
242 (fun p continuation ->
245 B.indent (proof2pres p)
248 B.V([Some "helm","xref",p.Con.proof_id],
249 [B.H([Some "helm","xref","ace_"^p.Con.proof_id],[hd]);
250 continuation])) ac continuation
252 and conclude2pres conclude indent omit_conclusion =
254 match conclude.Con.conclude_conclusion with
256 not omit_conclusion or
257 (* CSC: I ignore the omit_conclusion flag in this case. *)
258 (* CSC: Is this the correct behaviour? In the stylesheets *)
259 (* CSC: we simply generated nothing (i.e. the output type *)
260 (* CSC: of the function should become an option. *)
261 conclude.Con.conclude_method = "BU_Conversion" ->
262 let concl = (term2pres t) in
263 if conclude.Con.conclude_method = "BU_Conversion" then
264 make_concl "that is equivalent to" concl
265 else if conclude.Con.conclude_method = "FalseInd" then
266 (* false ind is in charge to add the conclusion *)
269 let conclude_body = conclude_aux conclude in
271 if conclude.Con.conclude_method = "TD_Conversion" then
272 make_concl "that is equivalent to" concl
273 else make_concl "we conclude" concl in
274 B.V ([], [conclude_body; ann_concl])
275 | _ -> conclude_aux conclude in
277 B.indent (B.H ([Some "helm", "xref", conclude.Con.conclude_id],
280 B.H ([Some "helm", "xref", conclude.Con.conclude_id],[tconclude_body])
282 and conclude_aux conclude =
283 if conclude.Con.conclude_method = "TD_Conversion" then
285 (match conclude.Con.conclude_conclusion with
286 None -> B.Text([],"NO EXPECTED!!!")
287 | Some c -> term2pres c) in
289 (match conclude.Con.conclude_args with
290 [Con.ArgProof p] -> p
291 | _ -> assert false) in
293 (match subproof.Con.proof_conclude.Con.conclude_conclusion with
294 None -> B.Text([],"NO SYNTH!!!")
295 | Some c -> (term2pres c)) in
298 [make_concl "we must prove" expected;
299 make_concl "or equivalently" synth;
300 proof2pres subproof])
301 else if conclude.Con.conclude_method = "BU_Conversion" then
303 else if conclude.Con.conclude_method = "Exact" then
305 (match conclude.Con.conclude_args with
306 [Con.Term t] -> term2pres t
308 (match p.Con.premise_binder with
309 | None -> assert false; (* unnamed hypothesis ??? *)
310 | Some s -> B.Text([],s))
311 | err -> assert false) in
312 (match conclude.Con.conclude_conclusion with
314 B.b_h [] [B.b_kw "Consider"; B.b_space; arg]
315 | Some c -> let conclusion = term2pres c in
317 [arg; B.b_space; B.b_kw "proves"]
320 else if conclude.Con.conclude_method = "Intros+LetTac" then
321 (match conclude.Con.conclude_args with
322 [Con.ArgProof p] -> proof2pres p
326 (match conclude.Con.conclude_conclusion with
327 None -> B.Text([],"NO Conclusion!!!")
328 | Some c -> term2pres c) in
329 (match conclude.Con.conclude_args with
332 ([None,"align","baseline 1"; None,"equalrows","false";
333 None,"columnalign","left"],
334 [B.H([],[B.Object([],proof2pres p)]);
336 (make_concl "we proved 1" conclusion))])]);
339 else if (conclude.Con.conclude_method = "Case") then
341 else if (conclude.Con.conclude_method = "ByInduction") then
343 else if (conclude.Con.conclude_method = "Exists") then
345 else if (conclude.Con.conclude_method = "AndInd") then
347 else if (conclude.Con.conclude_method = "FalseInd") then
349 else if (conclude.Con.conclude_method = "Rewrite") then
350 let justif1,justif2 =
351 (match (List.nth conclude.Con.conclude_args 6) with
352 Con.ArgProof p -> justification term2pres p
353 | _ -> assert false) in
355 (match List.nth conclude.Con.conclude_args 2 with
356 Con.Term t -> term2pres t
357 | _ -> assert false) in
359 (match List.nth conclude.Con.conclude_args 5 with
360 Con.Term t -> term2pres t
361 | _ -> assert false) in
366 B.b_space; (B.b_kw "with");
368 B.b_space; justif1])::
369 match justif2 with None -> [] | Some j -> [B.indent j])
370 else if conclude.Con.conclude_method = "Eq_chain" then
371 let justification p =
372 let j1,j2 = justification term2pres p in
373 j1 :: B.b_space :: (match j2 with Some j -> [j] | None -> [])
378 | (Con.ArgProof p)::(Con.Term t)::tl ->
379 B.HOV(RenderingAttrs.indent_attributes `BoxML,([B.b_kw "=";B.b_space;term2pres t;B.b_space]@justification p))::(aux tl)
383 match List.hd conclude.Con.conclude_args with
387 B.HOV([],[term2pres hd; (* B.b_space; *)
388 B.V ([],aux (List.tl conclude.Con.conclude_args))])
389 else if conclude.Con.conclude_method = "Apply" then
391 make_args_for_apply term2pres conclude.Con.conclude_args in
395 B.Text([],"(")::pres_args@[B.Text([],")")])
398 B.b_kw ("Apply method" ^ conclude.Con.conclude_method ^ " to");
399 (B.indent (B.V ([], args2pres conclude.Con.conclude_args)))])
401 and args2pres l = List.map arg2pres l
405 Con.Aux n -> B.b_kw ("aux " ^ n)
406 | Con.Premise prem -> B.b_kw "premise"
407 | Con.Lemma lemma -> B.b_kw "lemma"
408 | Con.Term t -> term2pres t
409 | Con.ArgProof p -> proof2pres p
410 | Con.ArgMethod s -> B.b_kw "method"
413 let proof_conclusion =
414 (match conclude.Con.conclude_conclusion with
415 None -> B.b_kw "No conclusion???"
416 | Some t -> term2pres t) in
417 let arg,args_for_cases =
418 (match conclude.Con.conclude_args with
419 Con.Aux(_)::Con.Aux(_)::Con.Term(_)::arg::tl ->
421 | _ -> assert false) in
425 Con.Aux n -> B.b_kw "an aux???"
426 | Con.Premise prem ->
427 (match prem.Con.premise_binder with
428 None -> B.b_kw "the previous result"
429 | Some n -> B.Object ([], P.Mi([],n)))
430 | Con.Lemma lemma -> B.Object ([], P.Mi([],lemma.Con.lemma_name))
433 | Con.ArgProof p -> B.b_kw "a proof???"
434 | Con.ArgMethod s -> B.b_kw "a method???")
436 (make_concl "we proceed by cases on" case_arg) in
438 (make_concl "to prove" proof_conclusion) in
439 B.V ([], case_on::to_prove::(make_cases args_for_cases))
441 and byinduction conclude =
442 let proof_conclusion =
443 (match conclude.Con.conclude_conclusion with
444 None -> B.b_kw "No conclusion???"
445 | Some t -> term2pres t) in
446 let inductive_arg,args_for_cases =
447 (match conclude.Con.conclude_args with
449 let l1,l2 = split (int_of_string n) tl in
450 let last_pos = (List.length l2)-1 in
451 List.nth l2 last_pos,l1
452 | _ -> assert false) in
455 (match inductive_arg with
456 Con.Aux n -> B.b_kw "an aux???"
457 | Con.Premise prem ->
458 (match prem.Con.premise_binder with
459 None -> B.b_kw "the previous result"
460 | Some n -> B.Object ([], P.Mi([],n)))
461 | Con.Lemma lemma -> B.Object ([], P.Mi([],lemma.Con.lemma_name))
464 | Con.ArgProof p -> B.b_kw "a proof???"
465 | Con.ArgMethod s -> B.b_kw "a method???") in
466 (make_concl "we proceed by induction on" arg) in
468 (make_concl "to prove" proof_conclusion) in
469 B.V ([], induction_on::to_prove:: (make_cases args_for_cases))
471 and make_cases l = List.map make_case l
477 (match p.Con.proof_name with
478 None -> B.b_kw "no name for case!!"
479 | Some n -> B.Object ([], P.Mi([],n))) in
483 `Hypothesis h -> h.Con.dec_inductive
484 | _ -> false) p.Con.proof_context in
492 let name = get_name h.Con.dec_name in
494 B.Object ([], P.Mi ([],name));
496 (term2pres h.Con.dec_type)]
497 | _ -> [B.Text ([],"???")]) in
501 (B.b_kw "Case"::B.b_space::name::pattern_aux)@
503 B.Text([], Utf8Macro.unicode_of_tex "\\Rightarrow")]) in
505 (match p.Con.proof_conclude.Con.conclude_conclusion with
506 None -> B.b_kw "No conclusion!!!"
507 | Some t -> term2pres t) in
508 let asubconcl = B.indent (make_concl "the thesis becomes" subconcl) in
509 let induction_hypothesis =
513 let text = B.indent (B.b_kw "by induction hypothesis we know") in
518 (match h.Con.dec_name with
523 B.Object ([], P.Mi ([],name));
526 term2pres h.Con.dec_type]))
527 | _ -> assert false in
528 let hyps = List.map make_hyp indhyps in
531 acontext2pres_old p.Con.proof_apply_context true in *)
532 let body = conclude2pres p.Con.proof_conclude true false in
535 match p.Con.proof_apply_context with
536 [] -> p.Con.proof_conclude.Con.conclude_id
537 | {Con.proof_id = id}::_ -> id
539 B.Action([None,"type","toggle"],
540 [ B.indent (add_xref acontext_id (B.b_kw "Proof"));
541 acontext2pres p.Con.proof_apply_context body true]) in
542 B.V ([], pattern::asubconcl::induction_hypothesis@[presacontext])
545 and falseind conclude =
546 let proof_conclusion =
547 (match conclude.Con.conclude_conclusion with
548 None -> B.b_kw "No conclusion???"
549 | Some t -> term2pres t) in
551 (match conclude.Con.conclude_args with
552 [Con.Aux(n);_;case_arg] -> case_arg
555 List.map (ContentPp.parg 0) conclude.Con.conclude_args;
559 Con.Aux n -> assert false
560 | Con.Premise prem ->
561 (match prem.Con.premise_binder with
562 None -> [B.b_kw "Contradiction, hence"]
564 [ B.Object ([],P.Mi([],n)); B.skip;
565 B.b_kw "is contradictory, hence"])
567 [ B.Object ([], P.Mi([],lemma.Con.lemma_name)); B.skip;
568 B.b_kw "is contradictory, hence" ]
569 | _ -> assert false) in
570 (* let body = proof2pres {proof with Con.proof_context = tl} in *)
571 make_row arg proof_conclusion
573 and andind conclude =
575 (match conclude.Con.conclude_args with
576 [Con.Aux(n);_;Con.ArgProof proof;case_arg] -> proof,case_arg
579 List.map (ContentPp.parg 0) conclude.Con.conclude_args;
583 Con.Aux n -> assert false
584 | Con.Premise prem ->
585 (match prem.Con.premise_binder with
587 | Some n -> [(B.b_kw "by"); B.b_space; B.Object([], P.Mi([],n))])
589 [(B.b_kw "by");B.skip;
590 B.Object([], P.Mi([],lemma.Con.lemma_name))]
591 | _ -> assert false) in
592 match proof.Con.proof_context with
593 `Hypothesis hyp1::`Hypothesis hyp2::tl ->
597 B.Object ([], P.Mi([],get_name hyp1.Con.dec_name));
600 term2pres hyp1.Con.dec_type]) in
604 B.Object ([], P.Mi([],get_name hyp2.Con.dec_name));
607 term2pres hyp2.Con.dec_type]) in
608 (* let body = proof2pres {proof with Con.proof_context = tl} in *)
609 let body = conclude2pres proof.Con.proof_conclude false true in
611 acontext2pres proof.Con.proof_apply_context body false in
614 [B.H ([],arg@[B.skip; B.b_kw "we have"]);
621 and exists conclude =
623 (match conclude.Con.conclude_args with
624 [Con.Aux(n);_;Con.ArgProof proof;_] -> proof
627 List.map (ContentPp.parg 0) conclude.Con.conclude_args;
629 match proof.Con.proof_context with
630 `Declaration decl::`Hypothesis hyp::tl
631 | `Hypothesis decl::`Hypothesis hyp::tl ->
636 B.Object ([], P.Mi([],get_name decl.Con.dec_name));
637 B.Text([],":"); term2pres decl.Con.dec_type]) in
640 [(B.b_kw "such that");
643 B.Object ([], P.Mi([],get_name hyp.Con.dec_name));
646 term2pres hyp.Con.dec_type]) in
647 (* let body = proof2pres {proof with Con.proof_context = tl} in *)
648 let body = conclude2pres proof.Con.proof_conclude false true in
650 acontext2pres proof.Con.proof_apply_context body false in
665 let conjecture2pres term2pres (id, n, context, ty) =
667 (B.b_hv [Some "helm", "xref", id]
669 B.b_h [] [B.b_text [] "{...}"; B.b_space];
674 [ B.b_object (p_mi [] "_") ;
675 B.b_object (p_mo [] ":?") ;
676 B.b_object (p_mi [] "_")]
677 | Some (`Declaration d)
678 | Some (`Hypothesis d) ->
679 let { Content.dec_name =
680 dec_name ; Content.dec_type = ty } = d
690 | Some (`Definition d) ->
692 { Content.def_name = def_name ;
693 Content.def_term = bo } = d
696 [ B.b_object (p_mi []
700 B.b_text [] (Utf8Macro.unicode_of_tex "\\Assign");
703 let proof_name = p.Content.proof_name in
705 [ B.b_object (p_mi []
706 (match proof_name with
709 B.b_text [] (Utf8Macro.unicode_of_tex "\\Assign");
710 proof2pres term2pres p])
711 (List.rev context)) ] ::
713 [ B.b_text [] (Utf8Macro.unicode_of_tex "\\vdash");
714 B.b_object (p_mi [] (string_of_int n)) ;
718 let metasenv2pres term2pres = function
721 (* Conjectures are in their own table to make *)
722 (* diffing the DOM trees easier. *)
724 ((B.b_kw ("Conjectures:" ^
725 (let _ = incr counter; in (string_of_int !counter)))) ::
726 (List.map (conjecture2pres term2pres) metasenv'))]
728 let params2pres params =
730 B.b_text [Some "xlink", "href", UriManager.string_of_uri uri]
731 (UriManager.name_of_uri uri)
733 let rec spatiate = function
736 | hd :: tl -> hd :: B.b_text [] ", " :: spatiate tl
741 let params = spatiate (List.map param2pres p) in
743 B.b_h [] (B.b_text [] "[" :: params @ [ B.b_text [] "]" ])]
745 let recursion_kind2pres params kind =
748 | `Recursive _ -> "Recursive definition"
749 | `CoRecursive -> "CoRecursive definition"
750 | `Inductive _ -> "Inductive definition"
751 | `CoInductive _ -> "CoInductive definition"
753 B.b_h [] (B.b_kw kind :: params2pres params)
755 let inductive2pres term2pres ind =
756 let constructor2pres decl =
758 B.b_text [] ("| " ^ get_name decl.Content.dec_name ^ ":");
760 term2pres decl.Content.dec_type
765 B.b_kw (ind.Content.inductive_name ^ " of arity");
767 term2pres ind.Content.inductive_type ]
768 :: List.map constructor2pres ind.Content.inductive_constructors)
770 let joint_def2pres term2pres def =
772 | `Inductive ind -> inductive2pres term2pres ind
773 | _ -> assert false (* ZACK or raise ToDo? *)
775 let content2pres term2pres (id,params,metasenv,obj) =
777 | `Def (Content.Const, thesis, `Proof p) ->
778 let name = get_name p.Content.proof_name in
780 [Some "helm","xref","id"]
781 ([ B.b_h [] (B.b_kw ("Proof " ^ name) :: params2pres params);
783 B.indent (term2pres thesis) ] @
784 metasenv2pres term2pres metasenv @
785 [proof2pres term2pres p])
786 | `Def (_, ty, `Definition body) ->
787 let name = get_name body.Content.def_name in
789 [Some "helm","xref","id"]
790 ([B.b_h [] (B.b_kw ("Definition " ^ name) :: params2pres params);
792 B.indent (term2pres ty)] @
793 metasenv2pres term2pres metasenv @
794 [B.b_kw "Body:"; term2pres body.Content.def_term])
795 | `Decl (_, `Declaration decl)
796 | `Decl (_, `Hypothesis decl) ->
797 let name = get_name decl.Content.dec_name in
799 [Some "helm","xref","id"]
800 ([B.b_h [] (B.b_kw ("Axiom " ^ name) :: params2pres params);
802 B.indent (term2pres decl.Content.dec_type)] @
803 metasenv2pres term2pres metasenv)
806 (recursion_kind2pres params joint.Content.joint_kind
807 :: List.map (joint_def2pres term2pres) joint.Content.joint_defs)
810 let content2pres ~ids_to_inner_sorts =
813 let ast, ids_to_uris =
814 TermAcicContent.ast_of_acic ids_to_inner_sorts annterm
816 CicNotationPres.box_of_mpres
817 (CicNotationPres.render ids_to_uris
818 (TermContentPres.pp_ast ast)))