1 (************************************************************************)
2 (* v * The Coq Proof Assistant / The Coq Development Team *)
3 (* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
4 (* \VV/ **************************************************************)
5 (* // * This file is distributed under the terms of the *)
6 (* * GNU Lesser General Public License Version 2.1 *)
7 (************************************************************************)
9 (* $Id: setoid_replace.ml 8900 2006-06-06 14:40:27Z letouzey $ *)
12 match LibraryObjects.eq_URI () with
15 raise (ProofEngineTypes.Fail (lazy "You need to register the default equality first. Please use the \"default\" command"))
17 let replace = ref (fun _ _ -> assert false)
18 let register_replace f = replace := f
20 let general_rewrite = ref (fun _ _ -> assert false)
21 let register_general_rewrite f = general_rewrite := f
23 let prlist_with_sepi sep elem =
29 let e = elem n h and r = aux (n+1) t in
37 rel_refl: Cic.term option;
38 rel_sym: Cic.term option;
39 rel_trans : Cic.term option;
40 rel_quantifiers_no: int (* it helps unification *);
41 rel_X_relation_class: Cic.term;
42 rel_Xreflexive_relation_class: Cic.term
45 type 'a relation_class =
46 Relation of 'a (* the rel_aeq of the relation or the relation *)
47 | Leibniz of Cic.term option (* the carrier (if eq is partially instantiated)*)
50 { args : (bool option * 'a relation_class) list;
51 output : 'a relation_class;
53 morphism_theory : Cic.term
57 { f_args : Cic.term list;
62 ACMorphism of relation morphism
65 let constr_relation_class_of_relation_relation_class =
67 Relation relation -> Relation relation.rel_aeq
68 | Leibniz t -> Leibniz t
72 let constr_of c = Constrintern.interp_constr Evd.empty (Global.env()) c
76 let constant dir s = Coqlib.gen_constant "Setoid_replace" ("Setoids"::dir) s
77 *) let constant dir s = Cic.Implicit None
79 let gen_constant dir s = Coqlib.gen_constant "Setoid_replace" dir s
80 *) let gen_constant dir s = Cic.Implicit None
82 let reference dir s = Coqlib.gen_reference "Setoid_replace" ("Setoids"::dir) s
83 let eval_reference dir s = EvalConstRef (destConst (constant dir s))
84 *) let eval_reference dir s = Cic.Implicit None
86 let eval_init_reference dir s = EvalConstRef (destConst (gen_constant ("Init"::dir) s))
90 let current_constant id =
94 anomaly ("Setoid: cannot find " ^ id)
95 *) let current_constant id = assert false
100 (gen_constant ["Relations"; "Relation_Definitions"] "reflexive")
102 (gen_constant ["Relations"; "Relation_Definitions"] "symmetric")
104 (gen_constant ["Relations"; "Relation_Definitions"] "transitive")
106 (gen_constant ["Relations"; "Relation_Definitions"] "relation")
108 let coq_Relation_Class = (constant ["Setoid"] "Relation_Class")
109 let coq_Argument_Class = (constant ["Setoid"] "Argument_Class")
110 let coq_Setoid_Theory = (constant ["Setoid"] "Setoid_Theory")
111 let coq_Morphism_Theory = (constant ["Setoid"] "Morphism_Theory")
112 let coq_Build_Morphism_Theory= (constant ["Setoid"] "Build_Morphism_Theory")
113 let coq_Compat = (constant ["Setoid"] "Compat")
115 let coq_AsymmetricReflexive = (constant ["Setoid"] "AsymmetricReflexive")
116 let coq_SymmetricReflexive = (constant ["Setoid"] "SymmetricReflexive")
117 let coq_SymmetricAreflexive = (constant ["Setoid"] "SymmetricAreflexive")
118 let coq_AsymmetricAreflexive = (constant ["Setoid"] "AsymmetricAreflexive")
119 let coq_Leibniz = (constant ["Setoid"] "Leibniz")
121 let coq_RAsymmetric = (constant ["Setoid"] "RAsymmetric")
122 let coq_RSymmetric = (constant ["Setoid"] "RSymmetric")
123 let coq_RLeibniz = (constant ["Setoid"] "RLeibniz")
125 let coq_ASymmetric = (constant ["Setoid"] "ASymmetric")
126 let coq_AAsymmetric = (constant ["Setoid"] "AAsymmetric")
128 let coq_seq_refl = (constant ["Setoid"] "Seq_refl")
129 let coq_seq_sym = (constant ["Setoid"] "Seq_sym")
130 let coq_seq_trans = (constant ["Setoid"] "Seq_trans")
132 let coq_variance = (constant ["Setoid"] "variance")
133 let coq_Covariant = (constant ["Setoid"] "Covariant")
134 let coq_Contravariant = (constant ["Setoid"] "Contravariant")
135 let coq_Left2Right = (constant ["Setoid"] "Left2Right")
136 let coq_Right2Left = (constant ["Setoid"] "Right2Left")
137 let coq_MSNone = (constant ["Setoid"] "MSNone")
138 let coq_MSCovariant = (constant ["Setoid"] "MSCovariant")
139 let coq_MSContravariant = (constant ["Setoid"] "MSContravariant")
141 let coq_singl = (constant ["Setoid"] "singl")
142 let coq_cons = (constant ["Setoid"] "cons")
144 let coq_equality_morphism_of_asymmetric_areflexive_transitive_relation =
146 "equality_morphism_of_asymmetric_areflexive_transitive_relation")
147 let coq_equality_morphism_of_symmetric_areflexive_transitive_relation =
149 "equality_morphism_of_symmetric_areflexive_transitive_relation")
150 let coq_equality_morphism_of_asymmetric_reflexive_transitive_relation =
152 "equality_morphism_of_asymmetric_reflexive_transitive_relation")
153 let coq_equality_morphism_of_symmetric_reflexive_transitive_relation =
155 "equality_morphism_of_symmetric_reflexive_transitive_relation")
156 let coq_make_compatibility_goal =
157 (constant ["Setoid"] "make_compatibility_goal")
158 let coq_make_compatibility_goal_eval_ref =
159 (eval_reference ["Setoid"] "make_compatibility_goal")
160 let coq_make_compatibility_goal_aux_eval_ref =
161 (eval_reference ["Setoid"] "make_compatibility_goal_aux")
163 let coq_App = (constant ["Setoid"] "App")
164 let coq_ToReplace = (constant ["Setoid"] "ToReplace")
165 let coq_ToKeep = (constant ["Setoid"] "ToKeep")
166 let coq_ProperElementToKeep = (constant ["Setoid"] "ProperElementToKeep")
167 let coq_fcl_singl = (constant ["Setoid"] "fcl_singl")
168 let coq_fcl_cons = (constant ["Setoid"] "fcl_cons")
170 let coq_setoid_rewrite = (constant ["Setoid"] "setoid_rewrite")
171 let coq_proj1 = (gen_constant ["Init"; "Logic"] "proj1")
172 let coq_proj2 = (gen_constant ["Init"; "Logic"] "proj2")
173 let coq_unit = (gen_constant ["Init"; "Datatypes"] "unit")
174 let coq_tt = (gen_constant ["Init"; "Datatypes"] "tt")
175 let coq_eq = (gen_constant ["Init"; "Logic"] "eq")
177 let coq_morphism_theory_of_function =
178 (constant ["Setoid"] "morphism_theory_of_function")
179 let coq_morphism_theory_of_predicate =
180 (constant ["Setoid"] "morphism_theory_of_predicate")
181 let coq_relation_of_relation_class =
182 (eval_reference ["Setoid"] "relation_of_relation_class")
183 let coq_directed_relation_of_relation_class =
184 (eval_reference ["Setoid"] "directed_relation_of_relation_class")
185 let coq_interp = (eval_reference ["Setoid"] "interp")
186 let coq_Morphism_Context_rect2 =
187 (eval_reference ["Setoid"] "Morphism_Context_rect2")
188 let coq_iff = (gen_constant ["Init";"Logic"] "iff")
189 let coq_impl = (constant ["Setoid"] "impl")
192 (************************* Table of declared relations **********************)
195 (* Relations are stored in a table which is synchronised with the Reset mechanism. *)
198 Map.Make(struct type t = Cic.term let compare = Pervasives.compare end);;
200 let relation_table = ref Gmap.empty
202 let relation_table_add (s,th) = relation_table := Gmap.add s th !relation_table
203 let relation_table_find s = Gmap.find s !relation_table
204 let relation_table_mem s = Gmap.mem s !relation_table
207 "(" ^ CicPp.ppterm s.rel_a ^ "," ^ CicPp.ppterm s.rel_aeq ^ ")"
209 let prrelation_class =
212 (try prrelation (relation_table_find eq)
214 "[[ Error: " ^ CicPp.ppterm eq ^
215 " is not registered as a relation ]]")
216 | Leibniz (Some ty) -> CicPp.ppterm ty
217 | Leibniz None -> "_"
219 let prmorphism_argument_gen prrelation (variance,rel) =
223 | Some true -> " ++> "
224 | Some false -> " --> "
226 let prargument_class = prmorphism_argument_gen prrelation_class
228 let pr_morphism_signature (l,c) =
229 String.concat "" (List.map (prmorphism_argument_gen CicPp.ppterm) l) ^
233 CicPp.ppterm k ^ ": " ^
234 String.concat "" (List.map prargument_class m.args) ^
235 prrelation_class m.output
237 (* A function that gives back the only relation_class on a given carrier *)
238 (*CSC: this implementation is really inefficient. I should define a new
239 map to make it efficient. However, is this really worth of? *)
240 let default_relation_for_carrier ?(filter=fun _ -> true) a =
241 let rng = Gmap.fold (fun _ y acc -> y::acc) !relation_table [] in
242 match List.filter (fun ({rel_a=rel_a} as r) -> rel_a = a && filter r) rng with
243 [] -> Leibniz (Some a)
248 ("Warning: There are several relations on the carrier \"" ^
249 CicPp.ppterm a ^ "\". The relation " ^ prrelation relation ^
254 let find_relation_class rel =
255 try Relation (relation_table_find rel)
258 let default_eq = default_eq () in
259 match CicReduction.whd [] rel with
260 Cic.Appl [Cic.MutInd(uri,0,[]);ty]
261 when UriManager.eq uri default_eq -> Leibniz (Some ty)
262 | Cic.MutInd(uri,0,[]) when UriManager.eq uri default_eq -> Leibniz None
263 | _ -> raise Not_found
266 let coq_iff_relation = lazy (find_relation_class (Lazy.force coq_iff))
267 let coq_impl_relation = lazy (find_relation_class (Lazy.force coq_impl))
268 *) let coq_iff_relation = Obj.magic 0 let coq_impl_relation = Obj.magic 0
270 let relation_morphism_of_constr_morphism =
271 let relation_relation_class_of_constr_relation_class =
273 Leibniz t -> Leibniz t
275 Relation (try relation_table_find aeq with Not_found -> assert false)
280 (fun (variance,rel) ->
281 variance, relation_relation_class_of_constr_relation_class rel
283 let output' = relation_relation_class_of_constr_relation_class mor.output in
284 {mor with args=args' ; output=output'}
287 Gmap.fold (fun _ y acc -> y.rel_aeq::acc) !relation_table []
289 (* Declare a new type of object in the environment : "relation-theory". *)
291 let relation_to_obj (s, th) =
293 if relation_table_mem s then
295 let old_relation = relation_table_find s in
298 match th.rel_sym with
299 None -> old_relation.rel_sym
303 ("Warning: The relation " ^ prrelation th' ^
304 " is redeclared. The new declaration" ^
305 (match th'.rel_refl with
307 | Some t -> " (reflevity proved by " ^ CicPp.ppterm t) ^
308 (match th'.rel_sym with
311 (if th'.rel_refl = None then " (" else " and ") ^
312 "symmetry proved by " ^ CicPp.ppterm t) ^
313 (if th'.rel_refl <> None && th'.rel_sym <> None then
315 " replaces the old declaration" ^
316 (match old_relation.rel_refl with
318 | Some t -> " (reflevity proved by " ^ CicPp.ppterm t) ^
319 (match old_relation.rel_sym with
322 (if old_relation.rel_refl = None then
324 "symmetry proved by " ^ CicPp.ppterm t) ^
325 (if old_relation.rel_refl <> None && old_relation.rel_sym <> None
333 relation_table_add (s,th')
335 (******************************* Table of declared morphisms ********************)
337 (* Setoids are stored in a table which is synchronised with the Reset mechanism. *)
339 let morphism_table = ref Gmap.empty
341 let morphism_table_find m = Gmap.find m !morphism_table
342 let morphism_table_add (m,c) =
345 morphism_table_find m
353 (function mor -> mor.args = c.args && mor.output = c.output) old
356 ("Warning: The morphism " ^ prmorphism m old_morph ^
358 "The new declaration whose compatibility is proved by " ^
359 CicPp.ppterm c.lem ^ " replaces the old declaration whose" ^
360 " compatibility was proved by " ^
361 CicPp.ppterm old_morph.lem ^ ".")
364 Not_found -> morphism_table := Gmap.add m (c::old) !morphism_table
366 let default_morphism ?(filter=fun _ -> true) m =
367 match List.filter filter (morphism_table_find m) with
368 [] -> raise Not_found
373 ("Warning: There are several morphisms associated to \"" ^
374 CicPp.ppterm m ^ "\". Morphism " ^ prmorphism m m1 ^
375 " is randomly chosen.");
377 relation_morphism_of_constr_morphism m1
379 (************************** Printing relations and morphisms **********************)
381 let print_setoids () =
384 assert (k=relation.rel_aeq) ;
385 prerr_endline ("Relation " ^ prrelation relation ^ ";" ^
386 (match relation.rel_refl with
388 | Some t -> " reflexivity proved by " ^ CicPp.ppterm t) ^
389 (match relation.rel_sym with
391 | Some t -> " symmetry proved by " ^ CicPp.ppterm t) ^
392 (match relation.rel_trans with
394 | Some t -> " transitivity proved by " ^ CicPp.ppterm t)))
399 (fun ({lem=lem} as mor) ->
400 prerr_endline ("Morphism " ^ prmorphism k mor ^
401 ". Compatibility proved by " ^
402 CicPp.ppterm lem ^ "."))
406 (***************** Adding a morphism to the database ****************************)
408 (* We maintain a table of the currently edited proofs of morphism lemma
409 in order to add them in the morphism_table when the user does Save *)
411 let edited = ref Gmap.empty
413 let new_edited id m =
414 edited := Gmap.add id m !edited
419 let no_more_edited id =
420 edited := Gmap.remove id !edited
426 let rec chop_aux acc = function
427 | (0, l2) -> (List.rev acc, l2)
428 | (n, (h::t)) -> chop_aux (h::acc) (pred n, t)
429 | (_, []) -> assert false
433 let compose_thing f l b =
437 | (n, ((v,t)::l), b) -> aux (n-1, l, f v t b)
440 aux (List.length l,l,b)
442 let compose_prod = compose_thing (fun v t b -> Cic.Prod (v,t,b))
443 let compose_lambda = compose_thing (fun v t b -> Cic.Lambda (v,t,b))
445 (* also returns the triple (args_ty_quantifiers_rev,real_args_ty,real_output)
446 where the args_ty and the output are delifted *)
447 let check_is_dependent n args_ty output =
448 let m = List.length args_ty - n in
449 let args_ty_quantifiers, args_ty = list_chop n args_ty in
452 Cic.Prod (n,s,t) when m > 0 ->
453 let t' = CicSubstitution.subst (Cic.Implicit None) (* dummy *) t in
455 let args,out = aux (m - 1) t' in s::args,out
457 raise (ProofEngineTypes.Fail (lazy
458 "The morphism is not a quantified non dependent product."))
461 let ty = compose_prod (List.rev args_ty) output in
462 let args_ty, output = aux m ty in
463 List.rev args_ty_quantifiers, args_ty, output
465 let cic_relation_class_of_X_relation typ value =
467 {rel_a=rel_a; rel_aeq=rel_aeq; rel_refl=Some refl; rel_sym=None} ->
468 Cic.Appl [coq_AsymmetricReflexive ; typ ; value ; rel_a ; rel_aeq; refl]
469 | {rel_a=rel_a; rel_aeq=rel_aeq; rel_refl=Some refl; rel_sym=Some sym} ->
470 Cic.Appl [coq_SymmetricReflexive ; typ ; rel_a ; rel_aeq; sym ; refl]
471 | {rel_a=rel_a; rel_aeq=rel_aeq; rel_refl=None; rel_sym=None} ->
472 Cic.Appl [coq_AsymmetricAreflexive ; typ ; value ; rel_a ; rel_aeq]
473 | {rel_a=rel_a; rel_aeq=rel_aeq; rel_refl=None; rel_sym=Some sym} ->
474 Cic.Appl [coq_SymmetricAreflexive ; typ ; rel_a ; rel_aeq; sym]
476 let cic_relation_class_of_X_relation_class typ value =
478 Relation {rel_X_relation_class=x_relation_class} ->
479 Cic.Appl [x_relation_class ; typ ; value]
480 | Leibniz (Some t) ->
481 Cic.Appl [coq_Leibniz ; typ ; t]
482 | Leibniz None -> assert false
485 let cic_precise_relation_class_of_relation =
487 {rel_a=rel_a; rel_aeq=rel_aeq; rel_refl=Some refl; rel_sym=None} ->
488 Cic.Appl [coq_RAsymmetric ; rel_a ; rel_aeq; refl]
489 | {rel_a=rel_a; rel_aeq=rel_aeq; rel_refl=Some refl; rel_sym=Some sym} ->
490 Cic.Appl [coq_RSymmetric ; rel_a ; rel_aeq; sym ; refl]
491 | {rel_a=rel_a; rel_aeq=rel_aeq; rel_refl=None; rel_sym=None} ->
492 Cic.Appl [coq_AAsymmetric ; rel_a ; rel_aeq]
493 | {rel_a=rel_a; rel_aeq=rel_aeq; rel_refl=None; rel_sym=Some sym} ->
494 Cic.Appl [coq_ASymmetric ; rel_a ; rel_aeq; sym]
496 let cic_precise_relation_class_of_relation_class =
499 {rel_aeq=rel_aeq; rel_Xreflexive_relation_class=lem; rel_refl=rel_refl }
501 rel_aeq,lem,not(rel_refl=None)
502 | Leibniz (Some t) ->
503 Cic.Appl [coq_eq ; t], Cic.Appl [coq_RLeibniz ; t], true
504 | Leibniz None -> assert false
506 let cic_relation_class_of_relation_class rel =
507 cic_relation_class_of_X_relation_class
510 let cic_argument_class_of_argument_class (variance,arg) =
511 let coq_variant_value =
513 None -> coq_Covariant (* dummy value, it won't be used *)
514 | Some true -> coq_Covariant
515 | Some false -> coq_Contravariant
517 cic_relation_class_of_X_relation_class coq_variance
518 coq_variant_value arg
520 let cic_arguments_of_argument_class_list args =
525 Cic.Appl [coq_singl ; coq_Argument_Class ; last]
527 Cic.Appl [coq_cons ; coq_Argument_Class ; he ; aux tl]
529 aux (List.map cic_argument_class_of_argument_class args)
531 let gen_compat_lemma_statement quantifiers_rev output args m =
532 let output = cic_relation_class_of_relation_class output in
533 let args = cic_arguments_of_argument_class_list args in
535 compose_prod quantifiers_rev
536 (Cic.Appl [coq_make_compatibility_goal ; args ; output ; m])
538 let morphism_theory_id_of_morphism_proof_id id =
539 id ^ "_morphism_theory"
542 let rec map_i_rec i = function
544 | x::l -> let v = f i x in v :: map_i_rec (i+1) l
548 (* apply_to_rels c [l1 ; ... ; ln] returns (c Rel1 ... reln) *)
549 let apply_to_rels c l =
552 let len = List.length l in
553 Cic.Appl (c::(list_map_i (fun i _ -> Cic.Rel (len - i)) 0 l))
555 let apply_to_relation subst rel =
556 if subst = [] then rel
558 let new_quantifiers_no = rel.rel_quantifiers_no - List.length subst in
559 assert (new_quantifiers_no >= 0) ;
560 { rel_a = Cic.Appl (rel.rel_a :: subst) ;
561 rel_aeq = Cic.Appl (rel.rel_aeq :: subst) ;
562 rel_refl = HExtlib.map_option (fun c -> Cic.Appl (c::subst)) rel.rel_refl ;
563 rel_sym = HExtlib.map_option (fun c -> Cic.Appl (c::subst)) rel.rel_sym;
564 rel_trans = HExtlib.map_option (fun c -> Cic.Appl (c::subst)) rel.rel_trans;
565 rel_quantifiers_no = new_quantifiers_no;
566 rel_X_relation_class = Cic.Appl (rel.rel_X_relation_class::subst);
567 rel_Xreflexive_relation_class =
568 Cic.Appl (rel.rel_Xreflexive_relation_class::subst) }
570 let add_morphism lemma_infos mor_name (m,quantifiers_rev,args,output) =
572 match lemma_infos with
574 (* the Morphism_Theory object has already been created *)
576 let len = List.length quantifiers_rev in
578 list_map_i (fun i _ -> Cic.Rel (len - i)) 0 quantifiers_rev
588 [e] -> v, Leibniz (Some e)
590 | Relation rel -> v, Relation (apply_to_relation subst rel)) args
592 compose_lambda quantifiers_rev
595 cic_arguments_of_argument_class_list applied_args;
596 cic_relation_class_of_relation_class output;
597 apply_to_rels (current_constant mor_name) quantifiers_rev])
598 | Some (lem_name,argsconstr,outputconstr) ->
599 (* only the compatibility has been proved; we need to declare the
600 Morphism_Theory object *)
601 let mext = current_constant lem_name in
604 Declare.declare_internal_constant mor_name
607 compose_lambda quantifiers_rev
609 [coq_Build_Morphism_Theory;
610 argsconstr; outputconstr; apply_to_rels m quantifiers_rev ;
611 apply_to_rels mext quantifiers_rev]);
612 const_entry_boxed = Options.boxed_definitions()},
613 IsDefinition Definition)) ;
614 *)ignore (assert false);
617 let mmor = current_constant mor_name in
620 (fun (variance,arg) ->
621 variance, constr_relation_class_of_relation_relation_class arg) args in
622 let output_constr = constr_relation_class_of_relation_relation_class output in
624 Lib.add_anonymous_leaf
626 { args = args_constr;
627 output = output_constr;
629 morphism_theory = mmor }));
630 *)let _ = mmor,args_constr,output_constr,lem in ignore (assert false);
631 (*COQ Options.if_verbose prerr_endline (CicPp.ppterm m ^ " is registered as a morphism") *) ()
633 let list_sub _ _ _ = assert false
635 (* first order matching with a bit of conversion *)
636 let unify_relation_carrier_with_type env rel t =
637 let raise_error quantifiers_no =
638 raise (ProofEngineTypes.Fail (lazy
639 ("One morphism argument or its output has type " ^ CicPp.ppterm t ^
640 " but the signature requires an argument of type \"" ^
641 CicPp.ppterm rel.rel_a ^ " " ^ String.concat " " (List.map (fun _ -> "?")
642 (Array.to_list (Array.make quantifiers_no 0))) ^ "\""))) in
645 Cic.Appl (he'::args') ->
646 let argsno = List.length args' - rel.rel_quantifiers_no in
647 let args1 = list_sub args' 0 argsno in
648 let args2 = list_sub args' argsno rel.rel_quantifiers_no in
649 if fst (CicReduction.are_convertible [] rel.rel_a (Cic.Appl (he'::args1)) CicUniv.empty_ugraph) then
652 raise_error rel.rel_quantifiers_no
654 if rel.rel_quantifiers_no = 0 && fst (CicReduction.are_convertible [] rel.rel_a t CicUniv.empty_ugraph) then
659 let evars,args,instantiated_rel_a =
660 let ty = CicTypeChecker.type_of_aux' [] [] rel.rel_a CicUniv.empty_ugraph in
661 let evd = Evd.create_evar_defs Evd.empty in
662 let evars,args,concl =
663 Clenv.clenv_environments_evars env evd
664 (Some rel.rel_quantifiers_no) ty
668 (match args with [] -> rel.rel_a | _ -> applist (rel.rel_a,args))
671 w_unify true (*??? or false? *) env Reduction.CONV (*??? or cumul? *)
672 ~mod_delta:true (*??? or true? *) t instantiated_rel_a evars in
674 List.map (Reductionops.nf_evar (Evd.evars_of evars')) args
680 apply_to_relation args rel
682 let unify_relation_class_carrier_with_type env rel t =
685 if fst (CicReduction.are_convertible [] t t' CicUniv.empty_ugraph) then
688 raise (ProofEngineTypes.Fail (lazy
689 ("One morphism argument or its output has type " ^ CicPp.ppterm t ^
690 " but the signature requires an argument of type " ^
692 | Leibniz None -> Leibniz (Some t)
693 | Relation rel -> Relation (unify_relation_carrier_with_type env rel t)
698 (* first order matching with a bit of conversion *)
699 (* Note: the type checking operations performed by the function could *)
700 (* be done once and for all abstracting the morphism structure using *)
701 (* the quantifiers. Would the new structure be more suited than the *)
702 (* existent one for other tasks to? (e.g. pretty printing would expose *)
703 (* much more information: is it ok or is it too much information?) *)
704 let unify_morphism_with_arguments gl (c,al)
705 {args=args; output=output; lem=lem; morphism_theory=morphism_theory} t
707 let allen = List.length al in
708 let argsno = List.length args in
709 if allen < argsno then raise Impossible; (* partial application *)
710 let quantifiers,al' = Util.list_chop (allen - argsno) al in
711 let c' = Cic.Appl (c::quantifiers) in
712 if dependent t c' then raise Impossible;
713 (* these are pf_type_of we could avoid *)
714 let al'_type = List.map (Tacmach.pf_type_of gl) al' in
718 var,unify_relation_class_carrier_with_type (pf_env gl) rel ty)
720 (* this is another pf_type_of we could avoid *)
721 let ty = Tacmach.pf_type_of gl (Cic.Appl (c::al)) in
722 let output' = unify_relation_class_carrier_with_type (pf_env gl) output ty in
723 let lem' = Cic.Appl (lem::quantifiers) in
724 let morphism_theory' = Cic.Appl (morphism_theory::quantifiers) in
725 ({args=args'; output=output'; lem=lem'; morphism_theory=morphism_theory'},
727 *) let unify_morphism_with_arguments _ _ _ _ = assert false
729 let new_morphism m signature id hook =
731 if Nametab.exists_cci (Lib.make_path id) or is_section_variable id then
732 raise (ProofEngineTypes.Fail (lazy (pr_id id ^ " already exists")))
734 let env = Global.env() in
735 let typeofm = Typing.type_of env Evd.empty m in
736 let typ = clos_norm_flags Closure.betaiotazeta empty_env Evd.empty typeofm in
737 let argsrev, output =
739 None -> decompose_prod typ
740 | Some (_,output') ->
741 (* the carrier of the relation output' can be a Prod ==>
742 we must uncurry on the fly output.
743 E.g: A -> B -> C vs A -> (B -> C)
744 args output args output
746 let rel = find_relation_class output' in
747 let rel_a,rel_quantifiers_no =
749 Relation rel -> rel.rel_a, rel.rel_quantifiers_no
750 | Leibniz (Some t) -> t, 0
751 | Leibniz None -> assert false in
753 clos_norm_flags Closure.betaiotazeta empty_env Evd.empty rel_a in
755 let _,output_rel_a_n = decompose_lam_n rel_quantifiers_no rel_a_n in
756 let argsrev,_ = decompose_prod output_rel_a_n in
757 let n = List.length argsrev in
758 let argsrev',_ = decompose_prod typ in
759 let m = List.length argsrev' in
760 decompose_prod_n (m - n) typ
761 with UserError(_,_) ->
762 (* decompose_lam_n failed. This may happen when rel_a is an axiom,
763 a constructor, an inductive type, etc. *)
766 let args_ty = List.rev argsrev in
767 let args_ty_len = List.length (args_ty) in
768 let args_ty_quantifiers_rev,args,args_instance,output,output_instance =
772 raise (ProofEngineTypes.Fail (lazy
773 ("The term " ^ CicPp.ppterm m ^ " has type " ^
774 CicPp.ppterm typeofm ^ " that is not a product."))) ;
775 ignore (check_is_dependent 0 args_ty output) ;
778 (fun (_,ty) -> None,default_relation_for_carrier ty) args_ty in
779 let output = default_relation_for_carrier output in
780 [],args,args,output,output
781 | Some (args,output') ->
783 let number_of_arguments = List.length args in
784 let number_of_quantifiers = args_ty_len - number_of_arguments in
785 if number_of_quantifiers < 0 then
786 raise (ProofEngineTypes.Fail (lazy
787 ("The morphism " ^ CicPp.ppterm m ^ " has type " ^
788 CicPp.ppterm typeofm ^ " that attends at most " ^ int args_ty_len ^
789 " arguments. The signature that you specified requires " ^
790 int number_of_arguments ^ " arguments.")))
793 (* the real_args_ty returned are already delifted *)
794 let args_ty_quantifiers_rev, real_args_ty, real_output =
795 check_is_dependent number_of_quantifiers args_ty output in
796 let quantifiers_rel_context =
797 List.map (fun (n,t) -> n,None,t) args_ty_quantifiers_rev in
798 let env = push_rel_context quantifiers_rel_context env in
799 let find_relation_class t real_t =
801 let rel = find_relation_class t in
802 rel, unify_relation_class_carrier_with_type env rel real_t
804 raise (ProofEngineTypes.Fail (lazy
805 ("Not a valid signature: " ^ CicPp.ppterm t ^
806 " is neither a registered relation nor the Leibniz " ^
809 let find_relation_class_v (variance,t) real_t =
810 let relation,relation_instance = find_relation_class t real_t in
811 match relation, variance with
813 | Relation {rel_sym = Some _}, None
814 | Relation {rel_sym = None}, Some _ ->
815 (variance, relation), (variance, relation_instance)
816 | Relation {rel_sym = None},None ->
817 raise (ProofEngineTypes.Fail (lazy
818 ("You must specify the variance in each argument " ^
819 "whose relation is asymmetric.")))
821 | Relation {rel_sym = Some _}, Some _ ->
822 raise (ProofEngineTypes.Fail (lazy
823 ("You cannot specify the variance of an argument " ^
824 "whose relation is symmetric.")))
826 let args, args_instance =
828 (List.map2 find_relation_class_v args real_args_ty) in
829 let output,output_instance= find_relation_class output' real_output in
830 args_ty_quantifiers_rev, args, args_instance, output, output_instance
833 let argsconstr,outputconstr,lem =
834 gen_compat_lemma_statement args_ty_quantifiers_rev output_instance
835 args_instance (apply_to_rels m args_ty_quantifiers_rev) in
836 (* "unfold make_compatibility_goal" *)
838 Reductionops.clos_norm_flags
839 (Closure.unfold_red (coq_make_compatibility_goal_eval_ref))
841 (* "unfold make_compatibility_goal_aux" *)
843 Reductionops.clos_norm_flags
844 (Closure.unfold_red(coq_make_compatibility_goal_aux_eval_ref))
847 let lem = Tacred.nf env Evd.empty lem in
848 if Lib.is_modtype () then
851 (Declare.declare_internal_constant id
852 (ParameterEntry lem, IsAssumption Logical)) ;
853 let mor_name = morphism_theory_id_of_morphism_proof_id id in
854 let lemma_infos = Some (id,argsconstr,outputconstr) in
855 add_morphism lemma_infos mor_name
856 (m,args_ty_quantifiers_rev,args,output)
861 (m,args_ty_quantifiers_rev,args,argsconstr,output,outputconstr);
862 Pfedit.start_proof id (Global, Proof Lemma)
863 (Declare.clear_proofs (Global.named_context ()))
865 Options.if_verbose msg (Printer.pr_open_subgoals ());
869 let morphism_hook _ ref =
871 let pf_id = id_of_global ref in
872 let mor_id = morphism_theory_id_of_morphism_proof_id pf_id in
873 let (m,quantifiers_rev,args,argsconstr,output,outputconstr) =
878 add_morphism (Some (pf_id,argsconstr,outputconstr)) mor_id
879 (m,quantifiers_rev,args,output) ;
884 type morphism_signature =
885 (bool option * Cic.term) list * Cic.term
887 let new_named_morphism id m sign =
888 new_morphism m sign id morphism_hook
890 (************************** Adding a relation to the database *********************)
894 let typ = Typing.type_of env Evd.empty a in
895 let a_quantifiers_rev,_ = Reduction.dest_arity env typ in
899 let check_eq a_quantifiers_rev a aeq =
902 Sign.it_mkProd_or_LetIn
903 (Cic.Appl [coq_relation ; apply_to_rels a a_quantifiers_rev])
907 (is_conv env Evd.empty (Typing.type_of env Evd.empty aeq) typ)
909 raise (ProofEngineTypes.Fail (lazy
910 (CicPp.ppterm aeq ^ " should have type (" ^ CicPp.ppterm typ ^ ")")))
911 *) (assert false : unit)
913 let check_property a_quantifiers_rev a aeq strprop coq_prop t =
917 (is_conv env Evd.empty (Typing.type_of env Evd.empty t)
918 (Sign.it_mkProd_or_LetIn
921 apply_to_rels a a_quantifiers_rev ;
922 apply_to_rels aeq a_quantifiers_rev]) a_quantifiers_rev))
924 raise (ProofEngineTypes.Fail (lazy
925 ("Not a valid proof of " ^ strprop ^ ".")))
928 let check_refl a_quantifiers_rev a aeq refl =
929 check_property a_quantifiers_rev a aeq "reflexivity" coq_reflexive refl
931 let check_sym a_quantifiers_rev a aeq sym =
932 check_property a_quantifiers_rev a aeq "symmetry" coq_symmetric sym
934 let check_trans a_quantifiers_rev a aeq trans =
935 check_property a_quantifiers_rev a aeq "transitivity" coq_transitive trans
938 let int_add_relation id a aeq refl sym trans =
940 let env = Global.env () in
942 let a_quantifiers_rev = check_a a in
943 check_eq a_quantifiers_rev a aeq ;
944 HExtlib.iter_option (check_refl a_quantifiers_rev a aeq) refl ;
945 HExtlib.iter_option (check_sym a_quantifiers_rev a aeq) sym ;
946 HExtlib.iter_option (check_trans a_quantifiers_rev a aeq) trans ;
947 let quantifiers_no = List.length a_quantifiers_rev in
954 rel_quantifiers_no = quantifiers_no;
955 rel_X_relation_class = Cic.Sort Cic.Prop; (* dummy value, overwritten below *)
956 rel_Xreflexive_relation_class = Cic.Sort Cic.Prop (* dummy value, overwritten below *)
958 let x_relation_class =
960 let len = List.length a_quantifiers_rev in
961 list_map_i (fun i _ -> Cic.Rel (len - i + 2)) 0 a_quantifiers_rev in
962 cic_relation_class_of_X_relation
963 (Cic.Rel 2) (Cic.Rel 1) (apply_to_relation subst aeq_rel) in
966 Declare.declare_internal_constant id
969 Sign.it_mkLambda_or_LetIn x_relation_class
970 ([ Name "v",None,Cic.Rel 1;
971 Name "X",None,Cic.Sort (Cic.Type (CicUniv.fresh ()))] @
973 const_entry_type = None;
974 const_entry_opaque = false;
975 const_entry_boxed = Options.boxed_definitions()},
976 IsDefinition Definition) in
978 let id_precise = id ^ "_precise_relation_class" in
979 let xreflexive_relation_class =
981 let len = List.length a_quantifiers_rev in
982 list_map_i (fun i _ -> Cic.Rel (len - i)) 0 a_quantifiers_rev
984 cic_precise_relation_class_of_relation (apply_to_relation subst aeq_rel) in
987 Declare.declare_internal_constant id_precise
990 Sign.it_mkLambda_or_LetIn xreflexive_relation_class a_quantifiers_rev;
991 const_entry_type = None;
992 const_entry_opaque = false;
993 const_entry_boxed = Options.boxed_definitions() },
994 IsDefinition Definition) in
998 rel_X_relation_class = current_constant id;
999 rel_Xreflexive_relation_class = current_constant id_precise } in
1000 relation_to_obj (aeq, aeq_rel) ;
1001 prerr_endline (CicPp.ppterm aeq ^ " is registered as a relation");
1005 let mor_name = id ^ "_morphism" in
1006 let a_instance = apply_to_rels a a_quantifiers_rev in
1007 let aeq_instance = apply_to_rels aeq a_quantifiers_rev in
1009 HExtlib.map_option (fun x -> apply_to_rels x a_quantifiers_rev) sym in
1011 HExtlib.map_option (fun x -> apply_to_rels x a_quantifiers_rev) refl in
1012 let trans_instance = apply_to_rels trans a_quantifiers_rev in
1013 let aeq_rel_class_and_var1, aeq_rel_class_and_var2, lemma, output =
1014 match sym_instance, refl_instance with
1016 (Some false, Relation aeq_rel),
1017 (Some true, Relation aeq_rel),
1019 [coq_equality_morphism_of_asymmetric_areflexive_transitive_relation;
1020 a_instance ; aeq_instance ; trans_instance],
1022 | None, Some refl_instance ->
1023 (Some false, Relation aeq_rel),
1024 (Some true, Relation aeq_rel),
1026 [coq_equality_morphism_of_asymmetric_reflexive_transitive_relation;
1027 a_instance ; aeq_instance ; refl_instance ; trans_instance],
1029 | Some sym_instance, None ->
1030 (None, Relation aeq_rel),
1031 (None, Relation aeq_rel),
1033 [coq_equality_morphism_of_symmetric_areflexive_transitive_relation;
1034 a_instance ; aeq_instance ; sym_instance ; trans_instance],
1036 | Some sym_instance, Some refl_instance ->
1037 (None, Relation aeq_rel),
1038 (None, Relation aeq_rel),
1040 [coq_equality_morphism_of_symmetric_reflexive_transitive_relation;
1041 a_instance ; aeq_instance ; refl_instance ; sym_instance ;
1046 Declare.declare_internal_constant mor_name
1048 {const_entry_body = Sign.it_mkLambda_or_LetIn lemma a_quantifiers_rev;
1049 const_entry_type = None;
1050 const_entry_opaque = false;
1051 const_entry_boxed = Options.boxed_definitions()},
1052 IsDefinition Definition)
1055 let a_quantifiers_rev =
1056 List.map (fun (n,b,t) -> assert (b = None); n,t) a_quantifiers_rev in
1057 add_morphism None mor_name
1058 (aeq,a_quantifiers_rev,[aeq_rel_class_and_var1; aeq_rel_class_and_var2],
1061 (* The vernac command "Add Relation ..." *)
1062 let add_relation id a aeq refl sym trans =
1063 int_add_relation id a aeq refl sym trans
1065 (****************************** The tactic itself *******************************)
1074 | Right2Left -> "<-"
1076 type constr_with_marks =
1077 | MApp of Cic.term * morphism_class * constr_with_marks list * direction
1079 | ToKeep of Cic.term * relation relation_class * direction
1081 let is_to_replace = function
1087 List.fold_left (||) false (List.map is_to_replace a)
1089 let cic_direction_of_direction =
1091 Left2Right -> coq_Left2Right
1092 | Right2Left -> coq_Right2Left
1094 let opposite_direction =
1096 Left2Right -> Right2Left
1097 | Right2Left -> Left2Right
1099 let direction_of_constr_with_marks hole_direction =
1101 MApp (_,_,_,dir) -> cic_direction_of_direction dir
1102 | ToReplace -> hole_direction
1103 | ToKeep (_,_,dir) -> cic_direction_of_direction dir
1106 Toapply of Cic.term (* apply the function to the argument *)
1107 | Toexpand of Cic.name * Cic.term (* beta-expand the function w.r.t. an argument
1109 let beta_expand c args_rev =
1113 | (Toapply _)::tl -> to_expand tl
1114 | (Toexpand (name,s))::tl -> (name,s)::(to_expand tl) in
1118 | (Toapply arg)::tl -> arg::(aux n tl)
1119 | (Toexpand _)::tl -> (Cic.Rel n)::(aux (n + 1) tl)
1121 compose_lambda (to_expand args_rev)
1122 (Cic.Appl (c :: List.rev (aux 1 args_rev)))
1124 exception Optimize (* used to fall-back on the tactic for Leibniz equality *)
1126 let rec list_sep_last = function
1127 | [] -> assert false
1129 | hd::tl -> let (l,tl) = list_sep_last tl in (l,hd::tl)
1131 let relation_class_that_matches_a_constr caller_name new_goals hypt =
1134 Cic.Appl (heq::hargs) -> heq,hargs
1137 let rec get_all_but_last_two =
1141 raise (ProofEngineTypes.Fail (lazy (CicPp.ppterm hypt ^
1142 " is not a registered relation.")))
1144 | he::tl -> he::(get_all_but_last_two tl) in
1145 let all_aeq_args = get_all_but_last_two hargs in
1146 let rec find_relation l subst =
1147 let aeq = Cic.Appl (heq::l) in
1149 let rel = find_relation_class aeq in
1150 match rel,new_goals with
1152 assert (subst = []);
1153 raise Optimize (* let's optimize the proof term size *)
1154 | Leibniz (Some _), _ ->
1155 assert (subst = []);
1157 | Leibniz None, _ ->
1158 (* for well-typedness reasons it should have been catched by the
1159 previous guard in the previous iteration. *)
1161 | Relation rel,_ -> Relation (apply_to_relation subst rel)
1164 raise (ProofEngineTypes.Fail (lazy
1165 (CicPp.ppterm (Cic.Appl (aeq::all_aeq_args)) ^
1166 " is not a registered relation.")))
1168 let last,others = list_sep_last l in
1169 find_relation others (last::subst)
1171 find_relation all_aeq_args []
1173 (* rel1 is a subrelation of rel2 whenever
1174 forall x1 x2, rel1 x1 x2 -> rel2 x1 x2
1175 The Coq part of the tactic, however, needs rel1 == rel2.
1176 Hence the third case commented out.
1177 Note: accepting user-defined subtrelations seems to be the last
1178 useful generalization that does not go against the original spirit of
1181 let subrelation gl rel1 rel2 =
1182 match rel1,rel2 with
1183 Relation {rel_aeq=rel_aeq1}, Relation {rel_aeq=rel_aeq2} ->
1184 (*COQ Tacmach.pf_conv_x gl rel_aeq1 rel_aeq2*) assert false
1185 | Leibniz (Some t1), Leibniz (Some t2) ->
1186 (*COQ Tacmach.pf_conv_x gl t1 t2*) assert false
1188 | _, Leibniz None -> assert false
1189 (* This is the commented out case (see comment above)
1190 | Leibniz (Some t1), Relation {rel_a=t2; rel_refl = Some _} ->
1191 Tacmach.pf_conv_x gl t1 t2
1195 (* this function returns the list of new goals opened by a constr_with_marks *)
1196 let rec collect_new_goals =
1198 MApp (_,_,a,_) -> List.concat (List.map collect_new_goals a)
1200 | ToKeep (_,Leibniz _,_)
1201 | ToKeep (_,Relation {rel_refl=Some _},_) -> []
1202 | ToKeep (c,Relation {rel_aeq=aeq; rel_refl=None},_) -> [Cic.Appl[aeq;c;c]]
1204 (* two marked_constr are equivalent if they produce the same set of new goals *)
1205 let marked_constr_equiv_or_more_complex to_marked_constr gl c1 c2 =
1206 let glc1 = collect_new_goals (to_marked_constr c1) in
1207 let glc2 = collect_new_goals (to_marked_constr c2) in
1208 List.for_all (fun c -> List.exists (fun c' -> (*COQ pf_conv_x gl c c'*) assert false) glc1) glc2
1210 let pr_new_goals i c =
1211 let glc = collect_new_goals c in
1212 " " ^ string_of_int i ^ ") side conditions:" ^
1213 (if glc = [] then " no side conditions"
1217 (List.map (fun c -> " ... |- " ^ CicPp.ppterm c) glc)))
1219 (* given a list of constr_with_marks, it returns the list where
1220 constr_with_marks than open more goals than simpler ones in the list
1222 let elim_duplicates gl to_marked_constr =
1228 (marked_constr_equiv_or_more_complex to_marked_constr gl he) tl
1234 let filter_superset_of_new_goals gl new_goals l =
1238 (fun g -> List.exists ((*COQ pf_conv_x gl g*)assert false) (collect_new_goals c)) new_goals) l
1240 (* given the list of lists [ l1 ; ... ; ln ] it returns the list of lists
1241 [ c1 ; ... ; cn ] that is the cartesian product of the sets l1, ..., ln *)
1242 let cartesian_product gl a =
1246 | [he] -> List.map (fun e -> [e]) he
1250 (List.map (function e -> List.map (function l -> e :: l) tl') he)
1252 aux (List.map (elim_duplicates gl (fun x -> x)) a)
1254 let does_not_occur n t = assert false
1256 let mark_occur gl ~new_goals t in_c input_relation input_direction =
1257 let rec aux output_relation output_direction in_c =
1259 if input_direction = output_direction
1260 && subrelation gl input_relation output_relation then
1265 | Cic.Appl (c::al) ->
1266 let mors_and_cs_and_als =
1267 let mors_and_cs_and_als =
1268 let morphism_table_find c =
1269 try morphism_table_find c with Not_found -> [] in
1273 let c' = Cic.Appl (c::acc) in
1275 List.map (fun m -> m,c',al') (morphism_table_find c')
1277 let c' = Cic.Appl (c::acc) in
1278 let acc' = acc @ [he] in
1279 (List.map (fun m -> m,c',l) (morphism_table_find c')) @
1283 let mors_and_cs_and_als =
1285 (function (m,c,al) ->
1286 relation_morphism_of_constr_morphism m, c, al)
1287 mors_and_cs_and_als in
1288 let mors_and_cs_and_als =
1291 try (unify_morphism_with_arguments gl (c,al) m t) :: l
1292 with Impossible -> l
1293 ) [] mors_and_cs_and_als
1296 (fun (mor,_,_) -> subrelation gl mor.output output_relation)
1299 (* First we look for well typed morphisms *)
1302 (fun res (mor,c,al) ->
1304 let arguments = mor.args in
1305 let apply_variance_to_direction default_dir =
1308 | Some true -> output_direction
1309 | Some false -> opposite_direction output_direction
1312 (fun a (variance,relation) ->
1314 (apply_variance_to_direction Left2Right variance) a) @
1316 (apply_variance_to_direction Right2Left variance) a)
1319 let a' = cartesian_product gl a in
1322 if not (get_mark a) then
1323 ToKeep (in_c,output_relation,output_direction)
1325 MApp (c,ACMorphism mor,a,output_direction)) a') @ res
1326 ) [] mors_and_cs_and_als in
1327 (* Then we look for well typed functions *)
1329 (* the tactic works only if the function type is
1330 made of non-dependent products only. However, here we
1331 can cheat a bit by partially istantiating c to match
1332 the requirement when the arguments to be replaced are
1333 bound by non-dependent products only. *)
1334 let typeofc = (*COQ Tacmach.pf_type_of gl c*) assert false in
1335 let typ = (*COQ nf_betaiota typeofc*) let _ = typeofc in assert false in
1336 let rec find_non_dependent_function context c c_args_rev typ
1342 [ToKeep (in_c,output_relation,output_direction)]
1345 cartesian_product gl (List.rev a_rev)
1349 if not (get_mark a) then
1350 (ToKeep (in_c,output_relation,output_direction))::res
1353 match output_relation with
1354 Leibniz (Some typ') when (*COQ pf_conv_x gl typ typ'*) assert false ->
1356 | Leibniz None -> assert false
1357 | _ when output_relation = coq_iff_relation
1364 ACFunction{f_args=List.rev f_args_rev;f_output=typ} in
1365 let func = beta_expand c c_args_rev in
1366 (MApp (func,mor,a,output_direction))::res
1369 let typnf = (*COQ Reduction.whd_betadeltaiota env typ*) assert false in
1372 find_non_dependent_function context c c_args_rev typ
1374 | Cic.Prod (name,s,t) ->
1375 let context' = Some (name, Cic.Decl s)::context in
1377 (aux (Leibniz (Some s)) Left2Right he) @
1378 (aux (Leibniz (Some s)) Right2Left he) in
1381 let he0 = List.hd he in
1383 match does_not_occur 1 t, he0 with
1384 _, ToKeep (arg,_,_) ->
1385 (* invariant: if he0 = ToKeep (t,_,_) then every
1386 element in he is = ToKeep (t,_,_) *)
1390 ToKeep(arg',_,_) when (*COQpf_conv_x gl arg arg'*) assert false ->
1393 (* generic product, to keep *)
1394 find_non_dependent_function
1395 context' c ((Toapply arg)::c_args_rev)
1396 (CicSubstitution.subst arg t) f_args_rev a_rev tl
1398 (* non-dependent product, to replace *)
1399 find_non_dependent_function
1400 context' c ((Toexpand (name,s))::c_args_rev)
1401 (CicSubstitution.lift 1 t) (s::f_args_rev) (he::a_rev) tl
1403 (* dependent product, to replace *)
1404 (* This limitation is due to the reflexive
1405 implementation and it is hard to lift *)
1406 raise (ProofEngineTypes.Fail (lazy
1407 ("Cannot rewrite in the argument of a " ^
1408 "dependent product. If you need this " ^
1409 "feature, please report to the author.")))
1413 find_non_dependent_function (*COQ (Tacmach.pf_env gl) ci vuole il contesto*)(assert false) c [] typ [] []
1416 elim_duplicates gl (fun x -> x) (res_functions @ res_mors)
1417 | Cic.Prod (_, c1, c2) ->
1418 if (*COQ (dependent (Cic.Rel 1) c2)*) assert false
1420 raise (ProofEngineTypes.Fail (lazy
1421 ("Cannot rewrite in the type of a variable bound " ^
1422 "in a dependent product.")))
1424 let typeofc1 = (*COQ Tacmach.pf_type_of gl c1*) assert false in
1425 if not (*COQ (Tacmach.pf_conv_x gl typeofc1 (Cic.Sort Cic.Prop))*) (assert false) then
1426 (* to avoid this error we should introduce an impl relation
1427 whose first argument is Type instead of Prop. However,
1428 the type of the new impl would be Type -> Prop -> Prop
1429 that is no longer a Relation_Definitions.relation. Thus
1430 the Coq part of the tactic should be heavily modified. *)
1431 raise (ProofEngineTypes.Fail (lazy
1432 ("Rewriting in a product A -> B is possible only when A " ^
1433 "is a proposition (i.e. A is of type Prop). The type " ^
1434 CicPp.ppterm c1 ^ " has type " ^ CicPp.ppterm typeofc1 ^
1435 " that is not convertible to Prop.")))
1437 aux output_relation output_direction
1438 (Cic.Appl [coq_impl; c1 ; CicSubstitution.subst (Cic.Rel 1 (*dummy*)) c2])
1440 if (*COQ occur_term t in_c*) assert false then
1441 raise (ProofEngineTypes.Fail (lazy
1442 ("Trying to replace " ^ CicPp.ppterm t ^ " in " ^ CicPp.ppterm in_c ^
1443 " that is not an applicative context.")))
1445 [ToKeep (in_c,output_relation,output_direction)]
1447 let aux2 output_relation output_direction =
1449 (fun res -> output_relation,output_direction,res)
1450 (aux output_relation output_direction in_c) in
1452 (aux2 coq_iff_relation Right2Left) @
1453 (* This is the case of a proposition of signature A ++> iff or B --> iff *)
1454 (aux2 coq_iff_relation Left2Right) @
1455 (aux2 coq_impl_relation Right2Left) in
1456 let res = elim_duplicates gl (function (_,_,t) -> t) res in
1457 let res' = filter_superset_of_new_goals gl new_goals res in
1460 raise (ProofEngineTypes.Fail (lazy
1461 ("Either the term " ^ CicPp.ppterm t ^ " that must be " ^
1462 "rewritten occurs in a covariant position or the goal is not " ^
1463 "made of morphism applications only. You can replace only " ^
1464 "occurrences that are in a contravariant position and such that " ^
1465 "the context obtained by abstracting them is made of morphism " ^
1466 "applications only.")))
1468 raise (ProofEngineTypes.Fail (lazy
1469 ("No generated set of side conditions is a superset of those " ^
1470 "requested by the user. The generated sets of side conditions " ^
1472 prlist_with_sepi "\n"
1473 (fun i (_,_,mc) -> pr_new_goals i mc) res)))
1477 ("Warning: The application of the tactic is subject to one of " ^
1478 "the \nfollowing set of side conditions that the user needs " ^
1480 prlist_with_sepi "\n"
1481 (fun i (_,_,mc) -> pr_new_goals i mc) res' ^
1482 "\nThe first set is randomly chosen. Use the syntax " ^
1483 "\"setoid_rewrite ... generate side conditions ...\" to choose " ^
1484 "a different set.") ;
1487 let cic_morphism_context_list_of_list hole_relation hole_direction out_direction
1492 Cic.Appl [coq_MSNone ; dir ; dir']
1493 | (Some true,dir,dir') ->
1494 assert (dir = dir');
1495 Cic.Appl [coq_MSCovariant ; dir]
1496 | (Some false,dir,dir') ->
1497 assert (dir <> dir');
1498 Cic.Appl [coq_MSContravariant ; dir] in
1502 | [(variance,out),(value,direction)] ->
1503 Cic.Appl [coq_singl ; coq_Argument_Class ; out],
1506 hole_relation; hole_direction ; out ;
1507 direction ; out_direction ;
1508 check (variance,direction,out_direction) ; value]
1509 | ((variance,out),(value,direction))::tl ->
1510 let outtl, valuetl = aux tl in
1512 [coq_cons; coq_Argument_Class ; out ; outtl],
1515 hole_relation ; hole_direction ; out ; outtl ;
1516 direction ; out_direction ;
1517 check (variance,direction,out_direction) ;
1521 let rec cic_type_nelist_of_list =
1525 Cic.Appl [coq_singl; Cic.Sort (Cic.Type (CicUniv.fresh ())) ; value]
1528 [coq_cons; Cic.Sort (Cic.Type (CicUniv.fresh ())); value;
1529 cic_type_nelist_of_list tl]
1531 let syntactic_but_representation_of_marked_but hole_relation hole_direction =
1532 let rec aux out (rel_out,precise_out,is_reflexive) =
1534 MApp (f, m, args, direction) ->
1535 let direction = cic_direction_of_direction direction in
1536 let morphism_theory, relations =
1538 ACMorphism { args = args ; morphism_theory = morphism_theory } ->
1539 morphism_theory,args
1540 | ACFunction { f_args = f_args ; f_output = f_output } ->
1542 if (*COQ eq_constr out (cic_relation_class_of_relation_class
1543 coq_iff_relation)*) assert false
1546 [coq_morphism_theory_of_predicate;
1547 cic_type_nelist_of_list f_args; f]
1550 [coq_morphism_theory_of_function;
1551 cic_type_nelist_of_list f_args; f_output; f]
1553 mt,List.map (fun x -> None,Leibniz (Some x)) f_args in
1556 (fun (variance,r) ->
1559 cic_relation_class_of_relation_class r,
1560 cic_precise_relation_class_of_relation_class r
1562 let cic_args_relations,argst =
1563 cic_morphism_context_list_of_list hole_relation hole_direction direction
1565 (fun (variance,trel,t,precise_t) v ->
1566 (variance,cic_argument_class_of_argument_class (variance,trel)),
1568 direction_of_constr_with_marks hole_direction v)
1569 ) cic_relations args)
1573 hole_relation ; hole_direction ;
1574 cic_args_relations ; out ; direction ;
1575 morphism_theory ; argst]
1577 Cic.Appl [coq_ToReplace ; hole_relation ; hole_direction]
1578 | ToKeep (c,_,direction) ->
1579 let direction = cic_direction_of_direction direction in
1580 if is_reflexive then
1582 [coq_ToKeep ; hole_relation ; hole_direction ; precise_out ;
1586 let typ = Cic.Appl [rel_out ; c ; c] in
1587 Cic.Cast ((*COQ Evarutil.mk_new_meta ()*)assert false, typ)
1590 [coq_ProperElementToKeep ;
1591 hole_relation ; hole_direction; precise_out ;
1592 direction; c ; c_is_proper]
1595 let apply_coq_setoid_rewrite hole_relation prop_relation c1 c2 (direction,h)
1598 let hole_relation = cic_relation_class_of_relation_class hole_relation in
1599 let hyp,hole_direction = h,cic_direction_of_direction direction in
1600 let cic_prop_relation = cic_relation_class_of_relation_class prop_relation in
1601 let precise_prop_relation =
1602 cic_precise_relation_class_of_relation_class prop_relation
1605 [coq_setoid_rewrite;
1606 hole_relation ; hole_direction ; cic_prop_relation ;
1607 prop_direction ; c1 ; c2 ;
1608 syntactic_but_representation_of_marked_but hole_relation hole_direction
1609 cic_prop_relation precise_prop_relation m ; hyp]
1612 let check_evar_map_of_evars_defs evd =
1613 let metas = Evd.meta_list evd in
1614 let check_freemetas_is_empty rebus =
1617 if Evd.meta_defined evd m then () else
1618 raise (Logic.RefinerError (Logic.OccurMetaGoal rebus)))
1623 Evd.Cltyp (_,{Evd.rebus=rebus; Evd.freemetas=freemetas}) ->
1624 check_freemetas_is_empty rebus freemetas
1625 | Evd.Clval (_,{Evd.rebus=rebus1; Evd.freemetas=freemetas1},
1626 {Evd.rebus=rebus2; Evd.freemetas=freemetas2}) ->
1627 check_freemetas_is_empty rebus1 freemetas1 ;
1628 check_freemetas_is_empty rebus2 freemetas2
1632 (* For a correct meta-aware "rewrite in", we split unification
1633 apart from the actual rewriting (Pierre L, 05/04/06) *)
1635 (* [unification_rewrite] searchs a match for [c1] in [but] and then
1636 returns the modified objects (in particular [c1] and [c2]) *)
1638 let unification_rewrite c1 c2 cl but gl =
1642 (* ~mod_delta:false to allow to mark occurences that must not be
1643 rewritten simply by replacing them with let-defined definitions
1645 w_unify_to_subterm ~mod_delta:false (pf_env gl) (c1,but) cl.env
1647 Pretype_errors.PretypeError _ ->
1648 (* ~mod_delta:true to make Ring work (since it really
1649 exploits conversion) *)
1650 w_unify_to_subterm ~mod_delta:true (pf_env gl) (c1,but) cl.env
1652 let cl' = {cl with env = env' } in
1653 let c2 = Clenv.clenv_nf_meta cl' c2 in
1654 check_evar_map_of_evars_defs env' ;
1655 env',Clenv.clenv_value cl', c1, c2
1658 (* no unification is performed in this function. [sigma] is the
1659 substitution obtained from an earlier unification. *)
1661 let relation_rewrite_no_unif c1 c2 hyp ~new_goals sigma gl =
1662 let but = (*COQ pf_concl gl*) assert false in
1664 let input_relation =
1665 relation_class_that_matches_a_constr "Setoid_rewrite"
1666 new_goals ((*COQTyping.mtype_of (pf_env gl) sigma (snd hyp)*) assert false) in
1667 let output_relation,output_direction,marked_but =
1668 mark_occur gl ~new_goals c1 but input_relation (fst hyp) in
1669 let cic_output_direction = cic_direction_of_direction output_direction in
1670 let if_output_relation_is_iff gl =
1672 apply_coq_setoid_rewrite input_relation output_relation c1 c2 hyp
1673 cic_output_direction marked_but
1675 let new_but = (*COQ Termops.replace_term c1 c2 but*) assert false in
1676 let hyp1,hyp2,proj =
1677 match output_direction with
1678 Right2Left -> new_but, but, coq_proj1
1679 | Left2Right -> but, new_but, coq_proj2
1681 let impl1 = Cic.Prod (Cic.Anonymous, hyp2, CicSubstitution.lift 1 hyp1) in
1682 let impl2 = Cic.Prod (Cic.Anonymous, hyp1, CicSubstitution.lift 1 hyp2) in
1683 let th' = Cic.Appl [proj; impl2; impl1; th] in
1684 (*COQ Tactics.refine
1685 (Cic.Appl [th'; mkCast (Evarutil.mk_new_meta(), DEFAULTcast, new_but)])
1686 gl*) let _ = th' in assert false in
1687 let if_output_relation_is_if gl =
1689 apply_coq_setoid_rewrite input_relation output_relation c1 c2 hyp
1690 cic_output_direction marked_but
1692 let new_but = (*COQ Termops.replace_term c1 c2 but*) assert false in
1693 (*COQ Tactics.refine
1694 (Cic.Appl [th ; mkCast (Evarutil.mk_new_meta(), DEFAULTcast, new_but)])
1695 gl*) let _ = new_but,th in assert false in
1696 if output_relation = coq_iff_relation then
1697 if_output_relation_is_iff gl
1699 if_output_relation_is_if gl
1702 (*COQ !general_rewrite (fst hyp = Left2Right) (snd hyp) gl*) assert false
1704 let relation_rewrite c1 c2 (input_direction,cl) ~new_goals gl =
1705 let (sigma,cl,c1,c2) = unification_rewrite c1 c2 cl ((*COQ pf_concl gl*) assert false) gl in
1706 relation_rewrite_no_unif c1 c2 (input_direction,cl) ~new_goals sigma gl
1708 let analyse_hypothesis gl c =
1709 let ctype = (*COQ pf_type_of gl c*) assert false in
1710 let eqclause = (*COQ Clenv.make_clenv_binding gl (c,ctype) Rawterm.NoBindings*) let _ = ctype in assert false in
1711 let (equiv, args) = (*COQ decompose_app (Clenv.clenv_type eqclause)*) assert false in
1712 let rec split_last_two = function
1713 | [c1;c2] -> [],(c1, c2)
1715 let l,res = split_last_two (y::z) in x::l, res
1716 | _ -> raise (ProofEngineTypes.Fail (lazy "The term provided is not an equivalence")) in
1717 let others,(c1,c2) = split_last_two args in
1718 eqclause,Cic.Appl (equiv::others),c1,c2
1720 let general_s_rewrite lft2rgt c ~new_goals (*COQgl*) =
1722 let eqclause,_,c1,c2 = analyse_hypothesis gl c in
1724 relation_rewrite c1 c2 (Left2Right,eqclause) ~new_goals gl
1726 relation_rewrite c2 c1 (Right2Left,eqclause) ~new_goals gl
1729 let relation_rewrite_in id c1 c2 (direction,eqclause) ~new_goals gl =
1730 let hyp = (*COQ pf_type_of gl (mkVar id)*) assert false in
1731 (* first, we find a match for c1 in the hyp *)
1732 let (sigma,cl,c1,c2) = unification_rewrite c1 c2 eqclause hyp gl in
1733 (* since we will actually rewrite in the opposite direction, we also need
1734 to replace every occurrence of c2 (resp. c1) in hyp with something that
1735 is convertible but not syntactically equal. To this aim we introduce a
1736 let-in and then we will use the intro tactic to get rid of it.
1737 Quite tricky to do properly since c1 can occur in c2 or vice-versa ! *)
1738 let mangled_new_hyp =
1739 let hyp = CicSubstitution.lift 2 hyp in
1740 (* first, we backup every occurences of c1 in newly allocated (Rel 1) *)
1741 let hyp = (*COQ Termops.replace_term (CicSubstitution.lift 2 c1) (Cic.Rel 1) hyp*) let _ = hyp in assert false in
1742 (* then, we factorize every occurences of c2 into (Rel 2) *)
1743 let hyp = (*COQ Termops.replace_term (CicSubstitution.lift 2 c2) (Cic.Rel 2) hyp*) let _ = hyp in assert false in
1744 (* Now we substitute (Rel 1) (i.e. c1) for c2 *)
1745 let hyp = CicSubstitution.subst (CicSubstitution.lift 1 c2) hyp in
1746 (* Since CicSubstitution.subst has killed Rel 1 and decreased the other Rels,
1747 Rel 1 is now coding for c2, we can build the let-in factorizing c2 *)
1748 Cic.LetIn (Cic.Anonymous,c2,hyp)
1750 let new_hyp = (*COQ Termops.replace_term c1 c2 hyp*) assert false in
1751 let oppdir = opposite_direction direction in
1753 cut_replacing id new_hyp
1755 (tclTHEN (change_in_concl None mangled_new_hyp)
1757 (relation_rewrite_no_unif c2 c1 (oppdir,cl) ~new_goals sigma))))
1759 *) let _ = oppdir,new_hyp,mangled_new_hyp in assert false
1761 let general_s_rewrite_in id lft2rgt c ~new_goals (*COQgl*) =
1763 let eqclause,_,c1,c2 = analyse_hypothesis gl c in
1765 relation_rewrite_in id c1 c2 (Left2Right,eqclause) ~new_goals gl
1767 relation_rewrite_in id c2 c1 (Right2Left,eqclause) ~new_goals gl
1770 let setoid_replace relation c1 c2 ~new_goals (*COQgl*) =
1776 match find_relation_class rel with
1778 | Leibniz _ -> raise Optimize
1781 raise (ProofEngineTypes.Fail (lazy
1782 (CicPp.ppterm rel ^ " is not a registered relation."))))
1784 match default_relation_for_carrier ((*COQ pf_type_of gl c1*) assert false) with
1786 | Leibniz _ -> raise Optimize
1788 let eq_left_to_right = Cic.Appl [relation.rel_aeq; c1 ; c2] in
1789 let eq_right_to_left = Cic.Appl [relation.rel_aeq; c2 ; c1] in
1791 let replace dir eq =
1792 tclTHENS (assert_tac false Cic.Anonymous eq)
1793 [onLastHyp (fun id ->
1795 (general_s_rewrite dir (mkVar id) ~new_goals)
1800 (replace true eq_left_to_right) (replace false eq_right_to_left) gl
1801 *) let _ = eq_left_to_right,eq_right_to_left in assert false
1803 Optimize -> (*COQ (!replace c1 c2) gl*) assert false
1805 let setoid_replace_in id relation c1 c2 ~new_goals (*COQgl*) =
1807 let hyp = pf_type_of gl (mkVar id) in
1808 let new_hyp = Termops.replace_term c1 c2 hyp in
1809 cut_replacing id new_hyp
1810 (fun exact -> tclTHENLASTn
1811 (setoid_replace relation c2 c1 ~new_goals)
1812 [| exact; tclIDTAC |]) gl
1815 (* [setoid_]{reflexivity,symmetry,transitivity} tactics *)
1817 let setoid_reflexivity_tac =
1818 let tac ((proof,goal) as status) =
1819 let (_,metasenv,_,_, _) = proof in
1820 let metano,context,ty = CicUtil.lookup_meta goal metasenv in
1822 let relation_class =
1823 relation_class_that_matches_a_constr "Setoid_reflexivity" [] ty in
1824 match relation_class with
1825 Leibniz _ -> assert false (* since [] is empty *)
1827 match rel.rel_refl with
1829 raise (ProofEngineTypes.Fail (lazy
1830 ("The relation " ^ prrelation rel ^ " is not reflexive.")))
1832 ProofEngineTypes.apply_tactic (PrimitiveTactics.apply_tac refl)
1836 ProofEngineTypes.apply_tactic EqualityTactics.reflexivity_tac status
1838 ProofEngineTypes.mk_tactic tac
1840 let setoid_symmetry =
1843 let relation_class =
1844 relation_class_that_matches_a_constr "Setoid_symmetry"
1845 [] ((*COQ pf_concl gl*) assert false) in
1846 match relation_class with
1847 Leibniz _ -> assert false (* since [] is empty *)
1849 match rel.rel_sym with
1851 raise (ProofEngineTypes.Fail (lazy
1852 ("The relation " ^ prrelation rel ^ " is not symmetric.")))
1853 | Some sym -> (*COQ apply sym gl*) assert false
1855 Optimize -> (*COQ symmetry gl*) assert false
1857 ProofEngineTypes.mk_tactic tac
1859 let setoid_symmetry_in id (*COQgl*) =
1862 let _,he,c1,c2 = analyse_hypothesis gl (mkVar id) in
1863 Cic.Appl [he ; c2 ; c1]
1865 cut_replacing id new_hyp (tclTHEN setoid_symmetry) gl
1868 let setoid_transitivity c (*COQgl*) =
1870 let relation_class =
1871 relation_class_that_matches_a_constr "Setoid_transitivity"
1872 [] ((*COQ pf_concl gl*) assert false) in
1873 match relation_class with
1874 Leibniz _ -> assert false (* since [] is empty *)
1877 let ctyp = pf_type_of gl c in
1878 let rel' = unify_relation_carrier_with_type (pf_env gl) rel ctyp in
1879 match rel'.rel_trans with
1881 raise (ProofEngineTypes.Fail (lazy
1882 ("The relation " ^ prrelation rel ^ " is not transitive.")))
1884 let transty = nf_betaiota (pf_type_of gl trans) in
1886 Reductionops.decomp_n_prod (pf_env gl) Evd.empty 2 transty in
1888 match List.rev argsrev with
1889 _::(Name n2,None,_)::_ -> Rawterm.NamedHyp n2
1893 (trans, Rawterm.ExplicitBindings [ dummy_loc, binder, c ]) gl
1896 Optimize -> (*COQ transitivity c gl*) assert false
1900 Tactics.register_setoid_reflexivity setoid_reflexivity;;
1901 Tactics.register_setoid_symmetry setoid_symmetry;;
1902 Tactics.register_setoid_symmetry_in setoid_symmetry_in;;
1903 Tactics.register_setoid_transitivity setoid_transitivity;;