]> matita.cs.unibo.it Git - helm.git/blob - cpc.ma
e1a6e824d25757d25f4bd0462c6caf82f8522b5c
[helm.git] / cpc.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/pconv_5.ma".
16 include "basic_2/rt_transition/cpm.ma".
17
18 (* CONTEXT-SENSITIVE PARALLEL R-CONVERSION FOR TERMS ************************)
19
20 definition cpc: sh → relation4 genv lenv term term ≝
21                 λh,G,L,T1,T2. ❨G,L❩ ⊢ T1 ➡[h,0] T2 ∨ ❨G,L❩ ⊢ T2 ➡[h,0] T1.
22
23 interpretation
24    "context-sensitive parallel r-conversion (term)"
25    'PConv h G L T1 T2 = (cpc h G L T1 T2).
26
27 (* Basic properties *********************************************************)
28
29 lemma cpc_refl: ∀h,G,L. reflexive … (cpc h G L).
30 /2 width=1 by or_intror/ qed.
31
32 lemma cpc_sym: ∀h,G,L. symmetric … (cpc h L G).
33 #h #G #L #T1 #T2 * /2 width=1 by or_introl, or_intror/
34 qed-.
35
36 (* Basic forward lemmas *****************************************************)
37
38 lemma cpc_fwd_cpr: ∀h,G,L,T1,T2. ❨G,L❩ ⊢ T1 ⬌[h] T2 →
39                    ∃∃T. ❨G,L❩ ⊢ T1 ➡[h,0] T & ❨G,L❩ ⊢ T2 ➡[h,0] T.
40 #h #G #L #T1 #T2 * /2 width=3 by ex2_intro/
41 qed-.