25 'a1 -> (Positive.pos -> 'a1) -> (Positive.pos -> 'a1) -> z -> 'a1
28 'a1 -> (Positive.pos -> 'a1) -> (Positive.pos -> 'a1) -> z -> 'a1
31 'a1 -> (Positive.pos -> 'a1) -> (Positive.pos -> 'a1) -> z -> 'a1
34 'a1 -> (Positive.pos -> 'a1) -> (Positive.pos -> 'a1) -> z -> 'a1
37 'a1 -> (Positive.pos -> 'a1) -> (Positive.pos -> 'a1) -> z -> 'a1
40 'a1 -> (Positive.pos -> 'a1) -> (Positive.pos -> 'a1) -> z -> 'a1
42 val z_inv_rect_Type4 :
43 z -> (__ -> 'a1) -> (Positive.pos -> __ -> 'a1) -> (Positive.pos -> __ ->
46 val z_inv_rect_Type3 :
47 z -> (__ -> 'a1) -> (Positive.pos -> __ -> 'a1) -> (Positive.pos -> __ ->
50 val z_inv_rect_Type2 :
51 z -> (__ -> 'a1) -> (Positive.pos -> __ -> 'a1) -> (Positive.pos -> __ ->
54 val z_inv_rect_Type1 :
55 z -> (__ -> 'a1) -> (Positive.pos -> __ -> 'a1) -> (Positive.pos -> __ ->
58 val z_inv_rect_Type0 :
59 z -> (__ -> 'a1) -> (Positive.pos -> __ -> 'a1) -> (Positive.pos -> __ ->
62 val z_discr : z -> z -> __
64 val z_of_nat : Nat.nat -> z
66 val neg_Z_of_nat : Nat.nat -> z
68 val abs : z -> Nat.nat
70 val oZ_test : z -> Bool.bool
76 val eqZb : z -> z -> Bool.bool
78 val z_compare : z -> z -> Positive.compare
80 val zplus : z -> z -> z
84 val zminus : z -> z -> z
86 val z_two_power_nat : Nat.nat -> z
88 val z_two_power_pos : Positive.pos -> z
94 val decidable_eq_Z_Type : z -> z -> (__, __) Types.sum
96 val zleb : z -> z -> Bool.bool
98 val zltb : z -> z -> Bool.bool
100 val zleb_elim_Type0 : z -> z -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1
102 val zltb_elim_Type0 : z -> z -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1
104 val z_times : z -> z -> z
106 val zmax : z -> z -> z