1 (** This module (Toolbox - subsets: operations) defines:
2 - subset binary intersection: [SAnd] (subset and)
3 - subset binary union: [SOr] (subset or)
4 - subset implication: [SImp] (subset implies)
5 - subset opposite: [SNot] (subset not)
6 - subset infinitary intersection: [SAll] (subset all)
7 - subset infinitary union: [SEx] (subset exists)
10 - introduction and elimination rules for the defined constants
11 - standard properties (idempotency, commutativity, associativity, compatibility, distributivity) for the defined constants
12 - Cantor's diagonalization theorem: [cantor_diag]
16 We require Toolbox relations and the underlying theory.
19 Require Export tbs_rel.
21 Section Subset_Operations_Definitions.
23 Section finitary_subset_operations.
25 (** Subset and: [(SAnd S U V)] corresponds to $ U \sand_S V $. *)
26 Definition SAnd: (S:Set) (S -> Set) -> (S -> Set) -> (S -> Set).
28 Exact (LAnd (U a) (V a)).
31 (** Subset or: [(SOr S U V)] corresponds to $ U \sor_S V $. *)
32 Definition SOr: (S:Set) (S -> Set) -> (S -> Set) -> (S -> Set).
34 Exact (LOr (U a) (V a)).
37 (** Subset implies: [(SImp S U V)] corresponds to $ U \simp_S V $. *)
38 Definition SImp: (S:Set) (S -> Set) -> (S -> Set) -> (S -> Set).
43 (** Subset not: [(SNot S U)] corresponds to $ \snot_S U $. *)
44 Definition SNot: (S:Set) (S -> Set) -> (S -> Set).
49 End finitary_subset_operations.
51 Section infinitary_subset_operations.
53 (** Subset all: [(SAll I S F)] corresponds to $ \bigsand_S\subset{F(i) \st i \in I} $. *)
54 Definition SAll: (I,S:Set) (I -> S -> Set) -> (S -> Set).
59 (** Subset exists: [(SEx I S F)] corresponds to $ \bigsor_S\subset{F(i) \st i \in I} $. *)
60 Definition SEx: (I,S:Set) (I -> S -> Set) -> (S -> Set).
62 Exact (LEx I [i](F i a)).
65 End infinitary_subset_operations.
67 End Subset_Operations_Definitions.
69 Section Subset_Operations_Results.
71 Section subset_binary_intersection.
73 (** Subset and, epsilon introduction: $ a \e U \limp a \e V \limp a \e U \sand V $. *)
74 Theorem sand_eps_i: (S:Set; U,V:S->Set; a:S) (Eps S a U) -> (Eps S a V) -> (Eps S a (SAnd S U V)).
83 (** Subset and, epsilon elimination 2: $ a \e U \sand V \limp a \e U $. *)
84 Theorem sand_eps_e2: (S:Set; V,U:S->Set; a:S) (Eps S a (SAnd S U V)) -> (Eps S a U).
87 MApply '(land_e2 (V a)).
92 (** Subset and, epsilon elimination 1: $ a \e U \sand V \limp a \e V $. *)
93 Theorem sand_eps_e1: (S:Set; U,V:S->Set; a:S) (Eps S a (SAnd S U V)) -> (Eps S a V).
96 MApply '(land_e1 (U a)).
101 (** Subset and, epsilon criterion: $ a \e U \land a \e V \liff a \e U \sand V $ *)
102 Theorem sand_eps: (S:Set; U,V:S->Set; a:S) (LIff (LAnd (Eps S a U) (Eps S a V)) (Eps S a (SAnd S U V))).
106 MApply '(land_e2 (Eps S a V)).
107 MApply '(land_e1 (Eps S a U)).
109 MApply '(sand_eps_e2 S V).
110 MApply '(sand_eps_e1 S U).
113 (** Subset and, sub or equal elimination 2: $ U \sand V \sub U $. *)
114 Theorem sand_sbe_e2: (S:Set; U,V:S->Set) (SbE S (SAnd S U V) U).
117 MApply '(sand_eps_e2 S V).
120 (** Subset and, sub or equal elimination 1: $ U \sand V \sub V $. *)
121 Theorem sand_sbe_e1: (S:Set; U,V:S->Set) (SbE S (SAnd S U V) V).
124 MApply '(sand_eps_e1 S U).
127 (** Subset and, sub or equal introduction: $ W \sub U \limp W \sub V \limp W \sub U \sand V $. *)
128 Theorem sand_sbe_i: (S:Set; W,U,V:S->Set) (SbE S W U) -> (SbE S W V) -> (SbE S W (SAnd S U V)).
136 (** Subset and, sub or equal compatibility 2: $ U \sub V \limp U \sand W \sub V \sand W $. *)
137 Theorem sand_sbe_c2: (S:Set; U,V,W:S->Set) (SbE S U V) -> (SbE S (SAnd S U W) (SAnd S V W)).
145 (** Subset and, sub or equal subset top: $ U \sub \stop \sand U $. *)
146 Theorem sand_sbe_stop: (S:Set; U:S->Set) (SbE S U (SAnd S (STop S) U)).
153 (** Subset and, sub or equal idempotency: $ U \sub U \sand U $. *)
154 Theorem sand_sbe_r: (S:Set; U:S->Set) (SbE S U (SAnd S U U)).
161 (** Subset and, idempotency $ U \sand U = U $. *)
162 Theorem sand_r: (S:Set; U:S->Set) (SEq S (SAnd S U U) U).
169 (** Subset and, sub or equal commutativity: $ V \sand U \sub U \sand V $. *)
170 Theorem sand_sbe_s: (S:Set; U,V:S->Set) (SbE S (SAnd S V U) (SAnd S U V)).
177 (** Subset and, commutativity: $ V \sand U = U \sand V $. *)
178 Theorem sand_s: (S:Set; U,V:S->Set) (SEq S (SAnd S V U) (SAnd S U V)).
185 (** Subset and, sub or equal associativity 1: $ U \sand (V \sand W) \sub (U \sand V) \sand W $. *)
186 Theorem sand_sbe_a1: (S:Set; U,V,W:S->Set) (SbE S (SAnd S U (SAnd S V W)) (SAnd S (SAnd S U V) W)).
191 MApply '(sbe_t S (SAnd S V W)).
194 MApply '(sbe_t S (SAnd S V W)).
199 (** Subset and, sub or equal associativity 2: $ (U \sand V) \sand W \sub U \sand (V \sand W) $. *)
200 Theorem sand_sbe_a2: (S:Set; U,V,W:S->Set) (SbE S (SAnd S (SAnd S U V) W) (SAnd S U (SAnd S V W))).
202 MApply '(sbe_t S (SAnd S W (SAnd S U V))).
204 MApply '(sbe_t S (SAnd S (SAnd S V W) U)).
205 MApply '(sbe_t S (SAnd S (SAnd S W U) V)).
207 MApply '(sbe_t S (SAnd S V (SAnd S W U))).
213 (** Subset and, associativity: $ U \sand (V \sand W) = (U \sand V) \sand W $. *)
214 Theorem sand_a: (S:Set; U,V,W:S->Set) (SEq S (SAnd S U (SAnd S V W)) (SAnd S (SAnd S U V) W)).
221 (** Subset and, sub or equal compatibility 1: $ U \sub V \limp W \sand U \sub W \sand V $. *)
222 Theorem sand_sbe_c1: (S:Set; U,V,W:S->Set) (SbE S U V) -> (SbE S (SAnd S W U) (SAnd S W V)).
224 MApply '(sbe_t S (SAnd S U W)).
226 MApply '(sbe_t S (SAnd S V W)).
231 (** Subset and, sub or equal compatibility: $ U \sub V \limp W \sub X \limp U \sand W \sub V \sand X $. *)
232 Theorem sand_sbe_c: (S:Set; U,V,W,X:S->Set) (SbE S U V) -> (SbE S W X) -> (SbE S (SAnd S U W) (SAnd S V X)).
234 MApply '(sbe_t S (SAnd S V W)).
239 End subset_binary_intersection.
241 Section subset_binary_union.
243 (** Subset or, epsilon introduction 2: $ a \e U \limp a \e U \sor V $. *)
244 Theorem sor_eps_i2: (S:Set; U,V:S->Set; a:S) (Eps S a U) -> (Eps S a (SOr S U V)).
252 (** Subset or, epsilon introduction 1: $ a \e V \limp a \e U \sor V $. *)
253 Theorem sor_eps_i1: (S:Set; U,V:S->Set; a:S) (Eps S a V) -> (Eps S a (SOr S U V)).
261 (** Subset or, epsilon elimination: $ (a \e U \limp T) \limp (a \e V \limp T) \limp a \e U \sor V \limp T $. *)
262 Theorem sor_eps_e: (S:Set; a:S; U,V:S->Set; T:Set) ((Eps S a U) -> T) -> ((Eps S a V) -> T) -> (Eps S a (SOr S U V)) -> T.
266 MApply '(lor_e (U a) (V a)).
273 (** Subset or, epsilon criterion: $ a \e U \lor a \e V \liff a \e U \sor V $. *)
274 Theorem sor_eps: (S:Set; U,V:S->Set; a:S) (LIff (LOr (Eps S a U) (Eps S a V)) (Eps S a (SOr S U V))).
277 MApply '(lor_e (Eps S a U) (Eps S a V)).
280 MApply '(sor_eps_e S a U V).
285 (** Subset or, sub or equal introduction 2: $ U \sub U \sor V $. *)
286 Theorem sor_sbe_i2: (S:Set; U,V:S->Set) (SbE S U (SOr S U V)).
292 (** Subset or, sub or equal introduction 1: $ V \sub U \sor V $. *)
293 Theorem sor_sbe_i1: (S:Set; U,V:S->Set) (SbE S V (SOr S U V)).
299 (** Subset or, sub or equal elimination: $ U \sub W \limp V \sub W \limp U \sor V \sub W $. *)
300 Theorem sor_sbe_e: (S:Set; W,U,V:S->Set) (SbE S U W) -> (SbE S V W) -> (SbE S (SOr S U V) W).
303 MApply '(sor_eps_e S a U V).
308 (** Subset or, sub or equal compatibility 2: $ U \sub V \limp U \sor W \sub V \sor W $. *)
309 Theorem sor_sbe_c2: (S:Set; U,V,W:S->Set) (SbE S U V) -> (SbE S (SOr S U W) (SOr S V W)).
317 (** Subset or, sub or equal idempotency: $ U \sor U \sub U $. *)
318 Theorem sor_sbe_r: (S:Set; U:S->Set) (SbE S (SOr S U U) U).
325 (** Subset or, idempotency: $ U \sor U = U $. *)
326 Theorem sor_r: (S:Set; U:S->Set) (SEq S (SOr S U U) U).
333 (** Subset or, sub or equal commutativity: $ V \sor U \sub U \sor V $. *)
334 Theorem sor_sbe_s: (S:Set; U,V:S->Set) (SbE S (SOr S V U) (SOr S U V)).
341 (** Subset or, commutativity: $ V \sor U = U \sor V $. *)
342 Theorem sor_s: (S:Set; U,V:S->Set) (SEq S (SOr S V U) (SOr S U V)).
349 (** Subset or, sub or equal associativity 1: $ U \sor (V \sor W) \sub (U \sor V) \sor W $. *)
350 Theorem sor_sbe_a1: (S:Set; U,V,W:S->Set) (SbE S (SOr S U (SOr S V W)) (SOr S (SOr S U V) W)).
353 MApply '(sbe_t S (SOr S U V)).
357 MApply '(sbe_t S (SOr S U V)).
363 (** Subset or, sub or equal associativity 2: $ (U \sor V) \sor W \sub U \sor (V \sor W) $. *)
364 Theorem sor_sbe_a2: (S:Set; U,V,W:S->Set) (SbE S (SOr S (SOr S U V) W) (SOr S U (SOr S V W))).
366 MApply '(sbe_t S (SOr S W (SOr S U V))).
368 MApply '(sbe_t S (SOr S (SOr S V W) U)).
369 MApply '(sbe_t S (SOr S (SOr S W U) V)).
371 MApply '(sbe_t S (SOr S V (SOr S W U))).
377 (** Subset or, associativity: $ U \sor (V \sor W) = (U \sor V) \sor W $. *)
378 Theorem sor_a: (S:Set; U,V,W:S->Set) (SEq S (SOr S U (SOr S V W)) (SOr S (SOr S U V) W)).
385 (** Subset or, sub or equal compatibility 1: $ U \sub V \limp W \sor U \sub W \sor V $. *)
386 Theorem sor_sbe_c1: (S:Set; U,V,W:S->Set) (SbE S U V) -> (SbE S (SOr S W U) (SOr S W V)).
388 MApply '(sbe_t S (SOr S U W)).
390 MApply '(sbe_t S (SOr S V W)).
395 (** Subset or, sub or equal compatibility: $ U \sub V \limp W \sub X \limp U \sor W \sub V \sor X $. *)
396 Theorem sor_sbe_c: (S:Set; U,V,W,X:S->Set) (SbE S U V) -> (SbE S W X) -> (SbE S (SOr S U W) (SOr S V X)).
398 MApply '(sbe_t S (SOr S V W)).
403 End subset_binary_union.
405 Section subset_implication.
407 (** Subset implies, epsilon introduction: $ (a \e U \limp a \e V) \limp a \e U \simp V $. *)
408 Theorem simp_eps_i: (S:Set; U,V:S->Set; a:S) ((Eps S a U) -> (Eps S a V)) -> (Eps S a (SImp S U V)).
418 (** Subset implies, epsilon elimination: $ a \e U \simp V \limp a \e U \limp a \e V $. *)
419 Theorem simp_eps_e: (S:Set; U,V:S->Set; a:S) (Eps S a (SImp S U V)) -> (Eps S a U) -> (Eps S a V).
427 (** Subset implies, epsilon criterion: $ a \e U \simp V \liff (a \e U \limp a \e V) $. *)
428 Theorem simp_eps: (S:Set; U,V:S->Set; a:S) (LIff (Eps S a (SImp S U V)) (Eps S a U) -> (Eps S a V)).
431 MApply '(simp_eps_e S U).
436 (** Subset implies, sub or equal elimination: $ W \sub U \simp V \limp W \sand U \sub V $. *)
437 Theorem simp_sbe_e: (S:Set; U,V,W:S->Set) (SbE S W (SImp S U V)) -> (SbE S (SAnd S W U) V).
440 MApply '(simp_eps_e S U).
442 MApply '(sand_eps_e2 S U).
443 MApply '(sand_eps_e1 S W).
446 (** Subset implies, sub or equal introduction: $ W \sand U \sub V \limp W \sub U \simp V $. *)
447 Theorem simp_sbe_i: (S:Set; U,V,W:S->Set) (SbE S (SAnd S W U) V) -> (SbE S W (SImp S U V)).
451 MApply '(sbe_e S (SAnd S W U)).
455 (** Subset implies, sub or equal compatibility 2: $ V \sub U \limp U \simp W \sub V \simp W $. *)
456 Theorem simp_sbe_c2: (S:Set; U,V,W:S->Set) (SbE S V U) -> (SbE S (SImp S U W) (SImp S V W)).
459 MApply '(sbe_t S (SAnd S (SImp S U W) U)).
465 (** Subset implies, sub or equal compatibility 2: $ U \sub V \limp W \simp U \sub W \simp V $. *)
466 Theorem simp_sbe_c1: (S:Set; U,V,W:S->Set) (SbE S U V) -> (SbE S (SImp S W U) (SImp S W V)).
474 (** Subset implies, subset top elimination: $ \stop \sub U \simp V \limp U \sub V $. *)
475 Theorem simp_stop_e: (S:Set; U,V:S->Set) (SbE S (STop S) (SImp S U V)) -> (SbE S U V).
477 MApply '(sbe_t S (SAnd S (STop S) U)).
478 MApply 'sand_sbe_stop.
482 (** Subset implies, subset top introduction: $ U \sub V \limp \stop \sub U \simp V $. *)
483 Theorem simp_stop_i: (S:Set; U,V:S->Set) (SbE S U V) -> (SbE S (STop S) (SImp S U V)).
490 (** Subset implies, subset top criterion: $ \stop \sub U \simp V \liff U \sub V $. *)
491 Theorem simp_stop: (S:Set; U,V:S->Set) (LIff (SbE S (STop S) (SImp S U V)) (SbE S U V)).
498 End subset_implication.
500 Section subset_negation.
502 (** Subset not, epsilon introduction: $ \lnot (a \e U) \limp a \e \snot U $. *)
503 Theorem snot_eps_i: (S:Set; U:S->Set; a:S) (LNot (Eps S a U)) -> (Eps S a (SNot S U)).
508 MApply '(lnot_e (Eps S a U)).
512 (** Subset not, epsilon elimination: $ a \e \snot U \limp \lnot (a \e U) $. *)
513 Theorem snot_eps_e: (S:Set; U:S->Set; a:S) (Eps S a (SNot S U)) -> (LNot (Eps S a U)).
517 MApply '(lnot_e (U a)).
518 MApply '(eps_e S a [a0:S](LNot (U a0))).
522 (** Subset not, epsilon criterion: $ \lnot (a \e U) \liff a \e \snot U $. *)
523 Theorem snot_eps: (S:Set; U:S->Set; a:S) (LIff (LNot (Eps S a U)) (Eps S a (SNot S U))).
530 (** Subset not, subset implication compatibility: $ \snot U = U \simp \sbot $. *)
531 Theorem snot_simp_c: (S:Set; U:S->Set) (SEq S (SNot S U) (SImp S U (SBot S))).
536 MApply '(lnot_e (Eps S a U)).
541 MApply '(sbot_eps_e S a).
542 MApply '(simp_eps_e S U).
547 Section subset_infinitary_intersection.
549 (** Subset all, epsilon introduction: $ ((\lall i \in I)\ a \e F(i)) \limp a \e \bigsand\subset{F(i) \st i \in I} $. *)
550 Theorem sall_eps_i: (I,S:Set; F:(I->S->Set); a:S) ((i:I) (Eps S a (F i))) -> (Eps S a (SAll I S F)).
559 (** Subset all, epsilon elimination: $ a \e \bigsand\subset{F(i) \st i \in I} \limp (\lall i \in I)\ a \e F(i) $. *)
560 Theorem sall_eps_e: (I,S:Set; F:(I->S->Set); a:S) (Eps S a (SAll I S F)) -> (i:I) (Eps S a (F i)).
563 Apply (mcut (i:I)(F i a)).
569 (** Subset all, epsilon criterion: $ a \e \bigsand\subset{F(i) \st i \in I} \liff (\lall i \in I)\ a \e F(i) $. *)
570 Theorem sall_eps: (I,S:Set; F:(I->S->Set); a:S) (LIff (Eps S a (SAll I S F)) (i:I) (Eps S a (F i))).
573 MApply '(sall_eps_e I).
578 (** Subset all, sub or equal elimination: $ (\lall i \in I)\ \bigsand\subset{F(i) \st i \in I} \sub F(i) $. *)
579 Theorem sall_sbe_e: (I,S:Set; F:(I->S->Set); i:I) (SbE S (SAll I S F) (F i)).
582 MApply '(sall_eps_e I).
585 (** Subset all, sub or equal introduction: $ ((\lall i \in I)\ W \sub F(i)) \limp W \sub \bigsand\subset{F(i) \st i \in I} $. *)
586 Theorem sall_sbe_i: (I,S:Set; F:(I->S->Set); W:S->Set) ((i:I)(SbE S W (F i))) -> (SbE S W (SAll I S F)).
594 End subset_infinitary_intersection.
596 Section subset_infinitary_union.
598 (** Subset exists, epsilon introduction: $ ((\lex i \in I)\ a \e F(i)) \limp a \e \bigsor\subset{F(i) \st i \in I} $. *)
599 Theorem sex_eps_i: (I,S:Set; F:(I->S->Set); a:S) (LEx I [i](Eps S a (F i))) -> (Eps S a (SEx I S F)).
604 MApply '(lex_i I a0).
608 (** Subset exists, epsilon elimination: $ a \e \bigsor\subset{F(i) \st i \in I} \limp (\lex i \in I)\ a \e F(i) $. *)
609 Theorem sex_eps_e: (I,S:Set; F:(I->S->Set); a:S) (Eps S a (SEx I S F)) -> (LEx I [i](Eps S a (F i))).
614 MApply '(lex_i I a0).
618 (** Subset exists, epsilon elimination: $ a \e \bigsor\subset{F(i) \st i \in I} \liff (\lex i \in I)\ a \e F(i) $. *)
619 Theorem sex_eps: (I,S:Set; F:(I->S->Set); a:S) (LIff (Eps S a (SEx I S F)) (LEx I [i](Eps S a (F i)))).
626 (** Subset exists, sub or equal introduction: $ (\lall i \in I)\ F(i) \sub \bigsor\subset{F(i) \st i \in I} $. *)
627 Theorem sex_sbe_i: (I,S:Set; F:(I->S->Set); i:I) (SbE S (F i) (SEx I S F)).
634 (** Subset exists, sub or equal elimination: $ ((\lall i \in I)\ F(i) \sub W) \limp \bigsor\subset{F(i) \st i \in I} \sub W $. *)
635 Theorem sex_sbe_e: (I,S:Set; F:(I->S->Set); W:S->Set) ((i:I)(SbE S (F i) W)) -> (SbE S (SEx I S F) W).
638 MCut '(LEx I [i:I](Eps S a (F i))).
641 MApply '(sbe_e S (F a0)).
645 End subset_infinitary_union.
647 Section subset_frame.
649 (** Frame, subset and introduction: $ U \sub V \limp U \sand V = U $. *)
650 Theorem frame_sand_i: (S:Set; U,V:S->Set) (SbE S U V) -> (SEq S (SAnd S U V) U).
654 MApply '(sbe_t S (SAnd S U U)).
659 (** Frame, subset and elimination: $ U \sand V = U \limp U \sub V $. *)
660 Theorem frame_sand_e: (S:Set; U,V:S->Set) (SEq S (SAnd S U V) U) -> (SbE S U V).
662 MApply '(sbe_t S (SAnd S U V)).
663 MApply '(land_e1 (SbE S (SAnd S U V) U)).
668 (** Frame, subset or introduction: $ U \sub V \limp U \sor V = V $. *)
669 Theorem frame_sor_i: (S:Set; U,V:S->Set) (SbE S U V) -> (SEq S (SOr S U V) V).
672 MApply '(sbe_t S (SOr S V V)).
678 (** Frame, subset or elimination: $ U \sor V = V \limp U \sub V $. *)
679 Theorem frame_sor_e: (S:Set; U,V:S->Set) (SEq S (SOr S U V) V) -> (SbE S U V).
681 MApply '(sbe_t S (SOr S U V)).
683 MApply '(land_e2 (SbE S V (SOr S U V))).
687 (** Frame, subset exists introduction: $ \bigsor\subset{F(i) \st i \in I} \sand W \sub \bigsor\subset{F(i) \sand W \st i \in I} $. *)
688 Theorem frame_sex_i: (I,S:Set; F:(I->S->Set); W:S->Set) (SbE S (SAnd S (SEx I S F) W) (SEx I S [i](SAnd S (F i) W))).
692 MCut '(Eps S a (SEx I S F)).
693 MApply '(sand_eps_e2 S W).
694 MCut '(LEx I [i:I](Eps S a (F i))).
697 MApply '(lex_i I a0).
699 MApply '(sand_eps_e1 S (SEx I S F)).
702 (** Frame, subset exists elimination: $ \bigsor\subset{F(i) \sand W \st i \in I} \sub \bigsor\subset{F(i) \st i \in I} \sand W $. *)
703 Theorem frame_sex_e: (I,S:Set; F:(I->S->Set); W:S->Set) (SbE S (SEx I S [i]
704 (SAnd S (F i) W)) (SAnd S (SEx I S F) W)).
708 MApply '(sbe_t S (F i)).
715 (** Frame, subset exists distributivity: $ \bigsor\subset{F(i) \st i \in I} \sand W = \bigsor\subset{F(i) \sand W \st i \in I} $. *)
716 Theorem frame_sex_d: (I,S:Set; F:(I->S->Set); W:S->Set) (SEq S (SAnd S (SEx I S F) W) (SEx I S [i](SAnd S (F i) W))).
723 (** Frame, subset implies elimination: $ \bigsor\subset{F(i) \st i \in I} \simp W \sub \bigsand\subset{F(i) \simp W \st i \in I} $. *)
724 Theorem frame_simp_e: (I,S:Set; F:(I->S->Set); W:S->Set) (SbE S (SImp S (SEx I S F) W) (SAll I S [i](SImp S (F i) W))).
731 (** Frame, subset implies introduction: $ \bigsand\subset{F(i) \simp W \st i \in I} \sub \bigsor\subset{F(i) \st i \in I} \simp W $. *)
732 Theorem frame_simp_i: (I,S:Set; F:(I->S->Set); W:S->Set) (SbE S (SAll I S [i](SImp S (F i) W)) (SImp S (SEx I S F) W)).
736 MCut '(LEx I [i:I](Eps S a (F i))).
739 MApply '(simp_eps_e S (F a0)).
740 MApply '(sall_eps_e I S [i:I](SImp S (F i) W)).
743 (** Frame, subset implies compatibility: $ \bigsor\subset{F(i) \st i \in I} \simp W = \bigsand\subset{F(i) \simp W \st i \in I} $. *)
744 Theorem frame_simp_c: (I,S:Set; F:(I->S->Set); W:S->Set) (SEq S (SImp S (SEx I S F) W) (SAll I S [i](SImp S (F i) W))).
747 MApply 'frame_simp_e.
748 MApply 'frame_simp_i.
753 Section cantor_diagonalization.
755 (** [(D S F)] is Cantor's subset $ D_F $. *)
756 Local D: (S:Set) (S -> S -> Set) -> (S -> Set).
758 Exact (SNot S [a:S](F a a)).
761 (** Cantor's diagonalization: $ (\lall b \in S)\ \lnot (F(b) = D_F) $. *)
762 Theorem cantor_diag: (S:Set; F:S->S->Set) (b:S) (LNot (SEq S (F b) (D S F))).
765 MCut '(LIff (Eps S b (F b)) (LNot (Eps S b (F b)))).
768 Change (Eps S b (D S F)).
769 MApply '(seq_e1 S (F b)).
770 MApply '(seq_e2 S (D S F)).
771 Change (Eps S b (SNot S (F b))).
773 MApply '(lnot_liff_lbot (Eps S b (F b))).
776 End cantor_diagonalization.
778 End Subset_Operations_Results.