3 Section Subset_Relative_Operations_Definitions.
5 Section relative_membership.
7 Definition REps: (I,S:Set) S -> (I -> S -> Set) -> Set := [I,S;a;F](LEx I [i](Eps S a (F i))).
9 End relative_membership.
11 Section infinitary_subset_relative_operations.
13 Definition SRAll: (I:Set; T:I->Set; S:Set) ((i:I) (T i) -> (S -> Set)) -> (S -> Set) := [I;T;S;R;a](RAll I T [i](REps (T i) S a (R i))).
15 Definition SREx: (I:Set; T:I->Set; S:Set) ((i:I) (T i) -> (S -> Set)) -> (S -> Set) := [I;T;S;R;a](REx I T [i](REps (T i) S a (R i))).
17 End infinitary_subset_relative_operations.
19 End Subset_Relative_Operations_Definitions.
21 Section Subset_Relative_Operations_Results.
23 Section relative_epsilon_conditions.
25 Theorem reps_i: (I:Set; i:I; S:Set; a:S; F:I->S->Set) (Eps S a (F i)) -> (REps I S a F).
31 Theorem reps_e: (I,S:Set; a:S; F:I->S->Set; P:Set) ((i:I) (Eps S a (F i)) -> P) -> (REps I S a F) -> P.
38 End relative_epsilon_conditions.
40 Section infinitary_relative_intersection.
42 Theorem srall_eps_i: (I:Set; T:I->Set; S:Set; a:S; R:(i:I)(T i)->(S->Set)) ((i:I) (REps (T i) S a (R i))) -> (Eps S a (SRAll I T S R)).
50 Theorem srall_eps_e: (I:Set; i:I; T:I->Set) (T i) -> (S:Set; a:S; R:(i:I)(T i)->(S->Set)) (Eps S a (SRAll I T S R)) -> (REps (T i) S a (R i)).
52 MCut '(SRAll I T S R a).
55 MApply '(rall_e I i T).
59 End infinitary_relative_intersection.
61 Section infinitary_relative_union.
63 Theorem srex_eps_i: (I:Set; i:I; S:Set; a:S; T:I->Set; R:(i:I)(T i)->(S->Set)) (REps (T i) S a (R i)) -> (Eps S a (SREx I T S R)).
69 MApply '(reps_e (T i) S a (R i)).
72 Theorem srex_eps_e: (I:Set; T:I->Set; S:Set; a:S; R:(i:I)(T i)->(S->Set)) (Eps S a (SREx I T S R)) -> (LEx I [i](REps (T i) S a (R i))).
74 MCut '(SREx I T S R a).
77 MApply '(rex_e I T [i:I](REps (T i) S a (R i))).
81 Theorem srex_sbe: (I:Set; V,W:I->Set; S:Set; F:I->S->Set) (SbE I V W) -> (SbE S (SREx I V S [i;_](F i)) (SREx I W S [i;_](F i))).
84 MCut '(LEx I [i:?](REps (V i) S a [_:?](F i))).
85 MApply '(srex_eps_e I V S a [i:?; _:(V i)](F i)).
87 MApply '(srex_eps_i I a0).
92 MApply '(reps_e (V a0) S a [_:(V a0)](F a0)).
93 MApply '(reps_i (W a0) H2).
94 MApply '(reps_e (V a0) S a [_:(V a0)](F a0)).
97 Theorem srex_sing_e: (S:Set; U:S->Set) (SbE S (SREx S U S [a;_](Sing S a)) U).
100 MCut '(LEx S [b:?](REps (U b) S a [_:?](Sing S b))).
101 MApply '(srex_eps_e S U S a [a0:S; _:(U a0)](Sing S a0)).
103 MApply '(reps_e (U a0) S a [_:(U a0)](Sing S a0)).
106 MApply '(id_repl S a a0).
110 Theorem srex_sing_i: (S:Set; U:S->Set) (SbE S U (SREx S U S [a;_](Sing S a))).
113 MApply '(srex_eps_i S a).
116 MApply '(reps_i (U a) H0).
120 Theorem srex_sing: (S:Set; U:S->Set) (SEq S (SREx S U S [a;_](Sing S a)) U).
127 End infinitary_relative_union.
129 End Subset_Relative_Operations_Results.