1 (* Copyright (C) 2000, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
26 exception NotImplemented;;
29 {annsynthesized : Cic.annterm ; annexpected : Cic.annterm option}
32 let fresh_id seed ids_to_terms ids_to_father_ids =
34 let res = "i" ^ string_of_int !seed in
36 Hashtbl.add ids_to_father_ids res father ;
37 Hashtbl.add ids_to_terms res t ;
41 exception NotEnoughElements;;
42 exception NameExpected;;
44 (*CSC: cut&paste da cicPp.ml *)
45 (* get_nth l n returns the nth element of the list l if it exists or *)
46 (* raises NotEnoughElements if l has less than n elements *)
50 | (n, he::tail) when n > 1 -> get_nth tail (n-1)
51 | (_,_) -> raise NotEnoughElements
54 let acic_of_cic_context' seed ids_to_terms ids_to_father_ids ids_to_inner_sorts
55 ids_to_inner_types metasenv context t expectedty
57 let module D = DoubleTypeInference in
58 let module T = CicTypeChecker in
60 let fresh_id' = fresh_id seed ids_to_terms ids_to_father_ids in
62 D.double_type_of metasenv context t expectedty
64 let rec aux computeinnertypes father context tt =
65 let fresh_id'' = fresh_id' father tt in
66 (*CSC: computeinnertypes era true, il che e' proprio sbagliato, no? *)
67 let aux' = aux computeinnertypes (Some fresh_id'') in
68 (* First of all we compute the inner type and the inner sort *)
69 (* of the term. They may be useful in what follows. *)
70 (*CSC: This is a very inefficient way of computing inner types *)
71 (*CSC: and inner sorts: very deep terms have their types/sorts *)
72 (*CSC: computed again and again. *)
73 let string_of_sort t =
74 match CicReduction.whd context t with
75 C.Sort C.Prop -> "Prop"
76 | C.Sort C.Set -> "Set"
77 | C.Sort C.Type -> "Type"
80 let ainnertypes,innertype,innersort,expected_available =
81 (*CSC: Here we need the algorithm for Coscoy's double type-inference *)
82 (*CSC: (expected type + inferred type). Just for now we use the usual *)
83 (*CSC: type-inference, but the result is very poor. As a very weak *)
84 (*CSC: patch, I apply whd to the computed type. Full beta *)
85 (*CSC: reduction would be a much better option. *)
86 let {D.synthesized = synthesized; D.expected = expected} =
87 if computeinnertypes then
88 D.CicHash.find terms_to_types tt
90 (* We are already in an inner-type and Coscoy's double *)
91 (* type inference algorithm has not been applied. *)
93 CicReduction.whd context (T.type_of_aux' metasenv context tt) ;
96 let innersort = T.type_of_aux' metasenv context synthesized in
97 let ainnertypes,expected_available =
98 if computeinnertypes then
99 let annexpected,expected_available =
102 | Some expectedty' ->
103 Some (aux false (Some fresh_id'') context expectedty'),true
107 aux false (Some fresh_id'') context synthesized ;
108 annexpected = annexpected
109 }, expected_available
113 ainnertypes,synthesized, string_of_sort innersort, expected_available
115 let add_inner_type id =
116 match ainnertypes with
118 | Some ainnertypes -> Hashtbl.add ids_to_inner_types id ainnertypes
123 match get_nth context n with
124 (Some (C.Name s,_)) -> s
125 | _ -> raise NameExpected
127 Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
128 if innersort = "Prop" && expected_available then
129 add_inner_type fresh_id'' ;
130 C.ARel (fresh_id'', n, id)
132 Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
133 if innersort = "Prop" && expected_available then
134 add_inner_type fresh_id'' ;
135 C.AVar (fresh_id'', uri)
137 let (_,canonical_context,_) =
138 List.find (function (m,_,_) -> n = m) metasenv
140 Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
141 if innersort = "Prop" && expected_available then
142 add_inner_type fresh_id'' ;
143 C.AMeta (fresh_id'', n,
148 | _, Some t -> Some (aux' context t)
149 | Some _, None -> assert false (* due to typing rules *))
150 canonical_context l))
151 | C.Sort s -> C.ASort (fresh_id'', s)
152 | C.Implicit -> C.AImplicit (fresh_id'')
154 Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
155 if innersort = "Prop" then
156 add_inner_type fresh_id'' ;
157 C.ACast (fresh_id'', aux' context v, aux' context t)
159 Hashtbl.add ids_to_inner_sorts fresh_id''
160 (string_of_sort innertype) ;
162 (fresh_id'', n, aux' context s,
163 aux' ((Some (n, C.Decl s))::context) t)
164 | C.Lambda (n,s,t) ->
165 Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
166 if innersort = "Prop" then
168 let father_is_lambda =
172 match Hashtbl.find ids_to_terms father' with
176 if (not father_is_lambda) || expected_available then
177 add_inner_type fresh_id''
180 (fresh_id'',n, aux' context s,
181 aux' ((Some (n, C.Decl s)::context)) t)
183 Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
184 if innersort = "Prop" then
185 add_inner_type fresh_id'' ;
187 (fresh_id'', n, aux' context s,
188 aux' ((Some (n, C.Def s))::context) t)
190 Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
191 if innersort = "Prop" then
192 add_inner_type fresh_id'' ;
193 C.AAppl (fresh_id'', List.map (aux' context) l)
194 | C.Const (uri,cn) ->
195 Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
196 if innersort = "Prop" && expected_available then
197 add_inner_type fresh_id'' ;
198 C.AConst (fresh_id'', uri, cn)
199 | C.MutInd (uri,cn,tyno) -> C.AMutInd (fresh_id'', uri, cn, tyno)
200 | C.MutConstruct (uri,cn,tyno,consno) ->
201 Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
202 if innersort = "Prop" && expected_available then
203 add_inner_type fresh_id'' ;
204 C.AMutConstruct (fresh_id'', uri, cn, tyno, consno)
205 | C.MutCase (uri, cn, tyno, outty, term, patterns) ->
206 Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
207 if innersort = "Prop" then
208 add_inner_type fresh_id'' ;
209 C.AMutCase (fresh_id'', uri, cn, tyno, aux' context outty,
210 aux' context term, List.map (aux' context) patterns)
211 | C.Fix (funno, funs) ->
213 List.map (fun (name,_,ty,_) -> Some (C.Name name, C.Decl ty)) funs
215 Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
216 if innersort = "Prop" then
217 add_inner_type fresh_id'' ;
218 C.AFix (fresh_id'', funno,
220 (fun (name, indidx, ty, bo) ->
221 (name, indidx, aux' context ty, aux' (tys@context) bo)
224 | C.CoFix (funno, funs) ->
226 List.map (fun (name,ty,_) -> Some (C.Name name, C.Decl ty)) funs
228 Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
229 if innersort = "Prop" then
230 add_inner_type fresh_id'' ;
231 C.ACoFix (fresh_id'', funno,
233 (fun (name, ty, bo) ->
234 (name, aux' context ty, aux' (tys@context) bo)
238 aux true None context t
241 let acic_of_cic_context metasenv context t =
242 let ids_to_terms = Hashtbl.create 503 in
243 let ids_to_father_ids = Hashtbl.create 503 in
244 let ids_to_inner_sorts = Hashtbl.create 503 in
245 let ids_to_inner_types = Hashtbl.create 503 in
247 acic_of_cic_context' seed ids_to_terms ids_to_father_ids ids_to_inner_sorts
248 ids_to_inner_types metasenv context t,
249 ids_to_terms, ids_to_father_ids, ids_to_inner_sorts, ids_to_inner_types
252 let acic_object_of_cic_object obj =
253 let module C = Cic in
254 let ids_to_terms = Hashtbl.create 503 in
255 let ids_to_father_ids = Hashtbl.create 503 in
256 let ids_to_inner_sorts = Hashtbl.create 503 in
257 let ids_to_inner_types = Hashtbl.create 503 in
258 let ids_to_conjectures = Hashtbl.create 11 in
259 let ids_to_hypotheses = Hashtbl.create 127 in
260 let hypotheses_seed = ref 0 in
261 let conjectures_seed = ref 0 in
263 let acic_term_of_cic_term_context' =
264 acic_of_cic_context' seed ids_to_terms ids_to_father_ids ids_to_inner_sorts
265 ids_to_inner_types in
266 let acic_term_of_cic_term' = acic_term_of_cic_term_context' [] [] in
269 C.Definition (id,bo,ty,params) ->
270 let abo = acic_term_of_cic_term' bo (Some ty) in
271 let aty = acic_term_of_cic_term' ty None in
272 C.ADefinition ("mettereaposto",id,abo,aty,(Cic.Actual params))
273 | C.Axiom (id,ty,params) -> raise NotImplemented
274 | C.Variable (id,bo,ty) -> raise NotImplemented
275 | C.CurrentProof (id,conjectures,bo,ty) ->
278 (function (i,canonical_context,term) as conjecture ->
279 let cid = "c" ^ string_of_int !conjectures_seed in
280 Hashtbl.add ids_to_conjectures cid conjecture ;
281 incr conjectures_seed ;
282 let acanonical_context =
287 let hid = "h" ^ string_of_int !hypotheses_seed in
288 Hashtbl.add ids_to_hypotheses hid hyp ;
289 incr hypotheses_seed ;
291 (Some (n,C.Decl t)) ->
293 acic_term_of_cic_term_context' conjectures tl t None
295 (hid,Some (n,C.ADecl at))::(aux tl)
296 | (Some (n,C.Def t)) ->
298 acic_term_of_cic_term_context' conjectures tl t None
300 (hid,Some (n,C.ADef at))::(aux tl)
301 | None -> (hid,None)::(aux tl)
303 aux canonical_context
306 acic_term_of_cic_term_context' conjectures canonical_context
309 (cid,i,acanonical_context,aterm)
311 let abo = acic_term_of_cic_term_context' conjectures [] bo (Some ty) in
312 let aty = acic_term_of_cic_term_context' conjectures [] ty None in
313 C.ACurrentProof ("mettereaposto",id,aconjectures,abo,aty)
314 | C.InductiveDefinition (tys,params,paramsno) -> raise NotImplemented
316 aobj,ids_to_terms,ids_to_father_ids,ids_to_inner_sorts,ids_to_inner_types,
317 ids_to_conjectures,ids_to_hypotheses