1 alias nat /Coq/Init/Datatypes/nat.ind#1/1
2 alias eq /Coq/Init/Logic/eq.ind#1/1
3 alias eq_ind /Coq/Init/Logic/eq_ind.con
4 alias eqT /Coq/Init/Logic_Type/eqT.ind#1/1
5 alias O /Coq/Init/Datatypes/nat.ind#1/1/1
6 alias S /Coq/Init/Datatypes/nat.ind#1/1/2
7 alias plus /Coq/Init/Peano/plus.con
8 alias mult /Coq/Init/Peano/mult.con
9 alias le /Coq/Init/Peano/le.ind#1/1
10 alias lt /Coq/Init/Peano/lt.con
11 alias not /Coq/Init/Logic/not.con
12 alias and /Coq/Init/Logic/and.ind#1/1
13 alias prod /Coq/Init/Datatypes/prod.ind#1/1
14 alias list /Coq/Lists/PolyList/list.ind#1/1
15 alias AllS_assoc /Coq/Lists/TheoryList/AllS_assoc.ind#1/1
16 alias V /Coq/Lists/PolyList/Lists/A.var
17 alias VA /Coq/Lists/TheoryList/Lists/A.var
18 alias VB /Coq/Lists/TheoryList/Lists/Assoc_sec/B.var
20 !A:Set.!B:Set.!P:!a:A.Prop.!l:list{V := (prod A B)}.
21 !H:(AllS_assoc {VA := A ; VB := B} P l).
23 (eq list{V := (prod A B)} l l)
26 \forall A,B: Set. \forall P: A \to Prop.
27 \forall l: list \subst [ A \Assign (prod A B) ].
28 \forall H:(AllS_assoc \subst [ A \Assign A ; B \Assign B] P l).
33 ?1: (A,B:Set; P:(A->Prop); l:(list A*B))
34 (AllS_assoc A B P l) -> (nil A*B)=(nil A*B)/\P==P
35 ?2: (A,B:Set; P:(A->Prop); l:(list A*B))
36 (AllS_assoc A B P l) ->
37 (a:A; b:B; l0:(list A*B))
38 (P a) -> (AllS_assoc A B P l0) -> l0=l0/\P==P ->
39 (cons (a,b) l0)=(cons (a,b) l0)/\P==P
40 [A,B:Set; P:(A->Prop); l:(list A*B); H:(AllS_assoc A B P l)]
41 (AllS_assoc_ind A B P [l0:(list A*B)]l0=l0/\P==P
42 (?1 A B P l H) (?2 A B P l H) l H)