2 \lambda H:n=n.\lambda g:(?\to (le n 0))\to True.(g \lambda f.(f n H))
3 ###### INTERPRETATION NUMBER 1 ######
4 ### (* disambiguation environment *)
5 alias id True = cic:/Coq/Init/Logic/True.ind#xpointer(1/1)
6 alias id le = cic:/Coq/Init/Peano/le.ind#xpointer(1/1)
7 alias id nat = cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1)
8 alias num (instance 0) = "natural number"
9 alias symbol "eq" (instance 0) = "leibnitz's equality"
10 ### (* METASENV after disambiguation *)
12 ### (* TERM after disambiguation *)
13 [n:nat][H:(eq nat n n)][g:(((x:nat)((eq nat x x)->(le x O))->(le n O))->True)](g [f:(x:nat)((eq nat x x)->(le x O))](f n H))
14 ### (* TYPE_OF the disambiguated term *)
15 (n:nat)(H:(eq nat n n))(g:(((x:nat)((eq nat x x)->(le x O))->(le n O))->True))True
16 ### (* REDUCED disambiguated term *)
17 [n:nat][H:(eq nat n n)][g:(((x:nat)((eq nat x x)->(le x O))->(le n O))->True)](g [f:(x:nat)((eq nat x x)->(le x O))](f n H))