]> matita.cs.unibo.it Git - helm.git/blob - helm/matita/applyTransformation.ml
Added a new section on the logical library.
[helm.git] / helm / matita / applyTransformation.ml
1 (* Copyright (C) 2000-2002, HELM Team.
2  * 
3  * This file is part of HELM, an Hypertextual, Electronic
4  * Library of Mathematics, developed at the Computer Science
5  * Department, University of Bologna, Italy.
6  * 
7  * HELM is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version 2
10  * of the License, or (at your option) any later version.
11  * 
12  * HELM is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with HELM; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
20  * MA  02111-1307, USA.
21  * 
22  * For details, see the HELM World-Wide-Web page,
23  * http://cs.unibo.it/helm/.
24  *)
25
26 (***************************************************************************)
27 (*                                                                         *)
28 (*                               PROJECT HELM                              *)
29 (*                                                                         *)
30 (*                   Andrea Asperti <asperti@cs.unibo.it>                  *)
31 (*                                21/11/2003                               *)
32 (*                                                                         *)
33 (*                                                                         *)
34 (***************************************************************************)
35
36 let mpres_document pres_box =
37   Xml.add_xml_declaration (CicNotationPres.print_box pres_box)
38
39 let mml_of_cic_sequent metasenv sequent =
40   let unsh_sequent,(asequent,ids_to_terms,
41     ids_to_father_ids,ids_to_inner_sorts,ids_to_hypotheses)
42   =
43     Cic2acic.asequent_of_sequent metasenv sequent
44   in
45   let content_sequent = Acic2content.map_sequent asequent in 
46   let pres_sequent = 
47     (Sequent2pres.sequent2pres ~ids_to_inner_sorts content_sequent)
48   in
49   let xmlpres = mpres_document pres_sequent in
50   (Xml2Gdome.document_of_xml DomMisc.domImpl xmlpres,
51    unsh_sequent,
52    (asequent,
53     (ids_to_terms,ids_to_father_ids,ids_to_hypotheses,ids_to_inner_sorts)))
54
55 let mml_of_cic_object obj =
56   let (annobj, ids_to_terms, ids_to_father_ids, ids_to_inner_sorts,
57     ids_to_inner_types, ids_to_conjectures, ids_to_hypotheses)
58   =
59     Cic2acic.acic_object_of_cic_object obj
60   in
61   let content = 
62     Acic2content.annobj2content ~ids_to_inner_sorts ~ids_to_inner_types annobj
63   in
64   let pres = Content2pres.content2pres ~ids_to_inner_sorts content in
65   let xmlpres = mpres_document pres in
66   let mathml = Xml2Gdome.document_of_xml DomMisc.domImpl xmlpres in
67   (mathml,(annobj,
68    (ids_to_terms, ids_to_father_ids, ids_to_conjectures, ids_to_hypotheses,
69   ids_to_inner_sorts,ids_to_inner_types)))
70