1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti, C.Sacerdoti Coen, *)
8 (* ||A|| E.Tassi, S.Zacchiroli *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/equality/".
17 inductive eq (A:Type) (x:A) : A \to Prop \def
18 refl_equal : eq A x x.
20 theorem sym_eq : \forall A:Type.\forall x,y:A. eq A x y \to eq A y x.
21 intros. elim H. apply refl_equal.
24 theorem trans_eq : \forall A:Type.
25 \forall x,y,z:A. eq A x y \to eq A y z \to eq A x z.
26 intros.elim H1.assumption.
30 \forall A:Type.\forall x:A. \forall P: A \to Prop.
31 P x \to \forall y:A. eq A y x \to P y.
32 intros.letin H1' \def sym_eq ? ? ? H1.clearbody H1'.
36 theorem f_equal: \forall A,B:Type.\forall f:A\to B.
37 \forall x,y:A. eq A x y \to eq B (f x) (f y).
38 intros.elim H.apply refl_equal.
41 theorem f_equal2: \forall A,B,C:Type.\forall f:A\to B \to C.
42 \forall x1,x2:A. \forall y1,y2:B.
43 eq A x1 x2\to eq B y1 y2\to eq C (f x1 y1) (f x2 y2).
44 intros.elim H1.elim H.apply refl_equal.