1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti, C.Sacerdoti Coen, *)
8 (* ||A|| E.Tassi, S.Zacchiroli *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/logic/".
18 inductive True: Prop \def
21 inductive False: Prop \def .
23 definition Not: Prop \to Prop \def
24 \lambda A. (A \to False).
26 theorem absurd : \forall A,C:Prop. A \to Not A \to C.
30 inductive And (A,B:Prop) : Prop \def
31 conj : A \to B \to (And A B).
33 theorem proj1: \forall A,B:Prop. (And A B) \to A.
34 intros. elim H. assumption.
37 theorem proj2: \forall A,B:Prop. (And A B) \to A.
38 intros. elim H. assumption.
41 inductive Or (A,B:Prop) : Prop \def
42 or_introl : A \to (Or A B)
43 | or_intror : B \to (Or A B).
45 inductive ex (A:Type) (P:A \to Prop) : Prop \def
46 ex_intro: \forall x:A. P x \to ex A P.
48 inductive ex2 (A:Type) (P,Q:A \to Prop) : Prop \def
49 ex_intro2: \forall x:A. P x \to Q x \to ex2 A P Q.