1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti, C.Sacerdoti Coen, *)
8 (* ||A|| E.Tassi, S.Zacchiroli *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/nat/orders".
18 include "higher_order_defs/ordering.ma".
21 inductive le (n:nat) : nat \to Prop \def
23 | le_S : \forall m:nat. le n m \to le n (S m).
25 (*CSC: the URI must disappear: there is a bug now *)
26 interpretation "natural 'less or equal to'" 'leq x y = (cic:/matita/nat/orders/le.ind#xpointer(1/1) x y).
27 (*CSC: the URI must disappear: there is a bug now *)
28 interpretation "natural 'neither less nor equal to'" 'nleq x y =
29 (cic:/matita/logic/connectives/Not.con
30 (cic:/matita/nat/orders/le.ind#xpointer(1/1) x y)).
32 definition lt: nat \to nat \to Prop \def
33 \lambda n,m:nat.(S n) \leq m.
35 (*CSC: the URI must disappear: there is a bug now *)
36 interpretation "natural 'less than'" 'lt x y = (cic:/matita/nat/orders/lt.con x y).
37 (*CSC: the URI must disappear: there is a bug now *)
38 interpretation "natural 'not less than'" 'nless x y =
39 (cic:/matita/logic/connectives/Not.con (cic:/matita/nat/orders/lt.con x y)).
41 definition ge: nat \to nat \to Prop \def
42 \lambda n,m:nat.m \leq n.
44 (*CSC: the URI must disappear: there is a bug now *)
45 interpretation "natural 'greater or equal to'" 'geq x y = (cic:/matita/nat/orders/ge.con x y).
47 definition gt: nat \to nat \to Prop \def
50 (*CSC: the URI must disappear: there is a bug now *)
51 interpretation "natural 'greater than'" 'gt x y = (cic:/matita/nat/orders/gt.con x y).
52 (*CSC: the URI must disappear: there is a bug now *)
53 interpretation "natural 'not greater than'" 'ngtr x y =
54 (cic:/matita/logic/connectives/Not.con (cic:/matita/nat/orders/gt.con x y)).
56 theorem transitive_le : transitive nat le.
57 unfold transitive.intros.elim H1.
59 apply le_S.assumption.
62 theorem trans_le: \forall n,m,p:nat. n \leq m \to m \leq p \to n \leq p
65 theorem transitive_lt: transitive nat lt.
66 unfold transitive.unfold lt.intros.elim H1.
67 apply le_S. assumption.
68 apply le_S.assumption.
71 theorem trans_lt: \forall n,m,p:nat. lt n m \to lt m p \to lt n p
74 theorem le_S_S: \forall n,m:nat. n \leq m \to S n \leq S m.
77 apply le_S.assumption.
80 theorem le_O_n : \forall n:nat. O \leq n.
86 theorem le_n_Sn : \forall n:nat. n \leq S n.
87 intros. apply le_S.apply le_n.
90 theorem le_pred_n : \forall n:nat. pred n \leq n.
93 simplify.apply le_n_Sn.
96 theorem le_S_S_to_le : \forall n,m:nat. S n \leq S m \to n \leq m.
97 intros.change with (pred (S n) \leq pred (S m)).
98 elim H.apply le_n.apply (trans_le ? (pred n1)).assumption.
102 theorem leS_to_not_zero : \forall n,m:nat. S n \leq m \to not_zero m.
103 intros.elim H.exact I.exact I.
107 theorem not_le_Sn_O: \forall n:nat. S n \nleq O.
108 intros.unfold Not.simplify.intros.apply (leS_to_not_zero ? ? H).
111 theorem not_le_Sn_n: \forall n:nat. S n \nleq n.
112 intros.elim n.apply not_le_Sn_O.unfold Not.simplify.intros.cut (S n1 \leq n1).
114 apply le_S_S_to_le.assumption.
118 theorem le_to_or_lt_eq : \forall n,m:nat.
119 n \leq m \to n < m \lor n = m.
122 left.unfold lt.apply le_S_S.assumption.
126 theorem lt_to_not_eq : \forall n,m:nat. n<m \to n \neq m.
127 unfold Not.intros.cut ((le (S n) m) \to False).
128 apply Hcut.assumption.rewrite < H1.
133 theorem lt_to_le : \forall n,m:nat. n<m \to n \leq m.
134 simplify.intros.unfold lt in H.elim H.
135 apply le_S. apply le_n.
136 apply le_S. assumption.
139 theorem lt_S_to_le : \forall n,m:nat. n < S m \to n \leq m.
141 apply le_S_S_to_le.assumption.
144 theorem not_le_to_lt: \forall n,m:nat. n \nleq m \to m<n.
146 apply (nat_elim2 (\lambda n,m.n \nleq m \to m<n)).
147 intros.apply (absurd (O \leq n1)).apply le_O_n.assumption.
148 unfold Not.unfold lt.intros.apply le_S_S.apply le_O_n.
149 unfold Not.unfold lt.intros.apply le_S_S.apply H.intros.apply H1.apply le_S_S.
153 theorem lt_to_not_le: \forall n,m:nat. n<m \to m \nleq n.
154 unfold Not.unfold lt.intros 3.elim H.
155 apply (not_le_Sn_n n H1).
156 apply H2.apply lt_to_le. apply H3.
159 theorem not_lt_to_le: \forall n,m:nat. Not (lt n m) \to le m n.
162 apply not_le_to_lt.exact H.
165 theorem le_to_not_lt: \forall n,m:nat. le n m \to Not (lt m n).
167 change with (Not (le (S m) n)).
168 apply lt_to_not_le.unfold lt.
169 apply le_S_S.assumption.
173 theorem le_n_O_to_eq : \forall n:nat. n \leq O \to O=n.
174 intro.elim n.reflexivity.
180 theorem le_n_O_elim: \forall n:nat.n \leq O \to \forall P: nat \to Prop.
185 apply (not_le_Sn_O ? H1).
188 theorem le_n_Sm_elim : \forall n,m:nat.n \leq S m \to
189 \forall P:Prop. (S n \leq S m \to P) \to (n=S m \to P) \to P.
191 apply H2.reflexivity.
192 apply H3. apply le_S_S. assumption.
195 (* lt and le trans *)
196 theorem lt_to_le_to_lt: \forall n,m,p:nat. lt n m \to le m p \to lt n p.
198 assumption.unfold lt.apply le_S.assumption.
201 theorem le_to_lt_to_lt: \forall n,m,p:nat. le n m \to lt m p \to lt n p.
203 assumption.apply H2.unfold lt.
204 apply lt_to_le.assumption.
207 theorem ltn_to_ltO: \forall n,m:nat. lt n m \to lt O m.
208 intros.apply (le_to_lt_to_lt O n).
209 apply le_O_n.assumption.
212 theorem lt_O_n_elim: \forall n:nat. lt O n \to
213 \forall P:nat\to Prop. (\forall m:nat.P (S m)) \to P n.
214 intro.elim n.apply False_ind.exact (not_le_Sn_O O H).
218 (* other abstract properties *)
219 theorem antisymmetric_le : antisymmetric nat le.
220 unfold antisymmetric.intros 2.
221 apply (nat_elim2 (\lambda n,m.(n \leq m \to m \leq n \to n=m))).
222 intros.apply le_n_O_to_eq.assumption.
223 intros.apply False_ind.apply (not_le_Sn_O ? H).
224 intros.apply eq_f.apply H.
225 apply le_S_S_to_le.assumption.
226 apply le_S_S_to_le.assumption.
229 theorem antisym_le: \forall n,m:nat. n \leq m \to m \leq n \to n=m
230 \def antisymmetric_le.
232 theorem decidable_le: \forall n,m:nat. decidable (n \leq m).
234 apply (nat_elim2 (\lambda n,m.decidable (n \leq m))).
235 intros.unfold decidable.left.apply le_O_n.
236 intros.unfold decidable.right.exact (not_le_Sn_O n1).
237 intros 2.unfold decidable.intro.elim H.
238 left.apply le_S_S.assumption.
239 right.unfold Not.intro.apply H1.apply le_S_S_to_le.assumption.
242 theorem decidable_lt: \forall n,m:nat. decidable (n < m).
243 intros.exact (decidable_le (S n) m).
246 (* well founded induction principles *)
248 theorem nat_elim1 : \forall n:nat.\forall P:nat \to Prop.
249 (\forall m.(\forall p. (p \lt m) \to P p) \to P m) \to P n.
250 intros.cut (\forall q:nat. q \le n \to P q).
251 apply (Hcut n).apply le_n.
252 elim n.apply (le_n_O_elim q H1).
254 intros.apply False_ind.apply (not_le_Sn_O p H2).
255 apply H.intros.apply H1.
257 apply lt_S_to_le.assumption.
258 apply (lt_to_le_to_lt p q (S n1) H3 H2).
261 (* some properties of functions *)
263 definition increasing \def \lambda f:nat \to nat.
264 \forall n:nat. f n < f (S n).
266 theorem increasing_to_monotonic: \forall f:nat \to nat.
267 increasing f \to monotonic nat lt f.
268 unfold monotonic.unfold lt.unfold increasing.unfold lt.intros.elim H1.apply H.
269 apply (trans_le ? (f n1)).
270 assumption.apply (trans_le ? (S (f n1))).
275 theorem le_n_fn: \forall f:nat \to nat. (increasing f)
276 \to \forall n:nat. n \le (f n).
279 apply (trans_le ? (S (f n1))).
280 apply le_S_S.apply H1.
281 simplify in H. unfold increasing in H.unfold lt in H.apply H.
284 theorem increasing_to_le: \forall f:nat \to nat. (increasing f)
285 \to \forall m:nat. \exists i. m \le (f i).
287 apply (ex_intro ? ? O).apply le_O_n.
289 apply (ex_intro ? ? (S a)).
290 apply (trans_le ? (S (f a))).
291 apply le_S_S.assumption.
292 simplify in H.unfold increasing in H.unfold lt in H.
296 theorem increasing_to_le2: \forall f:nat \to nat. (increasing f)
297 \to \forall m:nat. (f O) \le m \to
298 \exists i. (f i) \le m \land m <(f (S i)).
300 apply (ex_intro ? ? O).
301 split.apply le_n.apply H.
303 cut ((S n1) < (f (S a)) \lor (S n1) = (f (S a))).
305 apply (ex_intro ? ? a).
306 split.apply le_S. assumption.assumption.
307 apply (ex_intro ? ? (S a)).
308 split.rewrite < H7.apply le_n.
311 apply le_to_or_lt_eq.apply H6.