1 set "baseuri" "cic:/matita/tests/rewrite/".
3 alias id "nat" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1)".
4 alias num (instance 0) = "natural number".
5 alias symbol "eq" (instance 0) = "leibnitz's equality".
6 alias symbol "plus" (instance 0) = "natural plus".
7 alias id "plus_n_O" = "cic:/Coq/Init/Peano/plus_n_O.con".
11 a = b \to b + a + b + a= (\lambda j.((\lambda w.((\lambda x.x + b + w + j) a)) b)) a.
13 rewrite < H in \vdash (? ? ? ((\lambda j.((\lambda w.%) ?)) ?)).
15 rewrite < H in \vdash (? ? % ?).
17 simplify in \vdash (? ? ? ((\lambda _.((\lambda _.%) ?)) ?)).
19 rewrite < H in \vdash (? ? ? (% ?)).
24 theorem t: \forall n. 0=0 \to n = n + 0.
29 (* In this test "rewrite < t" should open a new goal 0=0 and put it in *)
30 (* the goallist so that the THEN tactical closes it using reflexivity. *)
31 theorem foo: \forall n. n = n + 0.
33 rewrite < t; reflexivity.