1 (* Copyright (C) 2004, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://helm.cs.unibo.it/
28 exception Meta_not_found of int
29 exception Subst_not_found of int
31 let lookup_meta index metasenv =
33 List.find (fun (index', _, _) -> index = index') metasenv
34 with Not_found -> raise (Meta_not_found index)
36 let lookup_subst n subst =
39 with Not_found -> raise (Subst_not_found n)
41 let exists_meta index = List.exists (fun (index', _, _) -> (index = index'))
43 (* clean_up_meta take a substitution, a metasenv a meta_inex and a local
44 context l and clean up l with respect to the hidden hipothesis in the
47 let clean_up_local_context subst metasenv n l =
50 let (cc,_,_) = lookup_subst n subst in cc
51 with Subst_not_found _ ->
53 let (_,cc,_) = lookup_meta n metasenv in cc
54 with Meta_not_found _ -> assert false) in
62 Invalid_argument _ -> assert false)
68 C.Rel m when m > k -> false
72 (fun i t -> i && (match t with None -> true | Some t -> is_closed k t)
75 | C.Implicit _ -> assert false
76 | C.Cast (te,ty) -> is_closed k te && is_closed k ty
77 | C.Prod (name,so,dest) -> is_closed k so && is_closed (k+1) dest
78 | C.Lambda (_,so,dest) -> is_closed k so && is_closed (k+1) dest
79 | C.LetIn (_,so,dest) -> is_closed k so && is_closed (k+1) dest
81 List.fold_right (fun x i -> i && is_closed k x) l true
82 | C.Var (_,exp_named_subst)
83 | C.Const (_,exp_named_subst)
84 | C.MutInd (_,_,exp_named_subst)
85 | C.MutConstruct (_,_,_,exp_named_subst) ->
86 List.fold_right (fun (_,x) i -> i && is_closed k x)
88 | C.MutCase (_,_,out,te,pl) ->
89 is_closed k out && is_closed k te &&
90 List.fold_right (fun x i -> i && is_closed k x) pl true
92 let len = List.length fl in
93 let k_plus_len = k + len in
95 (fun (_,_,ty,bo) i -> i && is_closed k ty && is_closed k_plus_len bo
98 let len = List.length fl in
99 let k_plus_len = k + len in
101 (fun (_,ty,bo) i -> i && is_closed k ty && is_closed k_plus_len bo
107 let rec is_meta_closed =
110 | Cic.Meta _ -> false
112 | Cic.Implicit _ -> assert false
113 | Cic.Cast (te,ty) -> is_meta_closed te && is_meta_closed ty
114 | Cic.Prod (name,so,dest) -> is_meta_closed so && is_meta_closed dest
115 | Cic.Lambda (_,so,dest) -> is_meta_closed so && is_meta_closed dest
116 | Cic.LetIn (_,so,dest) -> is_meta_closed so && is_meta_closed dest
118 not (List.exists (fun x -> not (is_meta_closed x)) l)
119 | Cic.Var (_,exp_named_subst)
120 | Cic.Const (_,exp_named_subst)
121 | Cic.MutInd (_,_,exp_named_subst)
122 | Cic.MutConstruct (_,_,_,exp_named_subst) ->
123 not (List.exists (fun (_,x) -> not (is_meta_closed x)) exp_named_subst)
124 | Cic.MutCase (_,_,out,te,pl) ->
125 is_meta_closed out && is_meta_closed te &&
126 not (List.exists (fun x -> not (is_meta_closed x)) pl)
130 not (is_meta_closed ty) || not (is_meta_closed bo))
132 | Cic.CoFix (_,fl) ->
135 not (is_meta_closed ty) || not (is_meta_closed bo))
139 let xpointer_RE = Str.regexp "\\([^#]+\\)#xpointer(\\(.*\\))"
140 let slash_RE = Str.regexp "/"
142 let term_of_uri uri =
143 let s = UriManager.string_of_uri uri in
145 (if UriManager.uri_is_con uri then
147 else if UriManager.uri_is_var uri then
149 else if not (Str.string_match xpointer_RE s 0) then
150 raise (UriManager.IllFormedUri s)
152 let (baseuri,xpointer) = (Str.matched_group 1 s, Str.matched_group 2 s) in
153 let baseuri = UriManager.uri_of_string baseuri in
154 (match Str.split slash_RE xpointer with
155 | [_; tyno] -> Cic.MutInd (baseuri, int_of_string tyno - 1, [])
156 | [_; tyno; consno] ->
158 (baseuri, int_of_string tyno - 1, int_of_string consno, [])
163 | Not_found -> raise (UriManager.IllFormedUri s)
165 let uri_of_term = function
166 | Cic.Const (uri, [])
167 | Cic.Var (uri, []) -> uri
168 | Cic.MutInd (baseuri, tyno, []) ->
169 UriManager.uri_of_string
170 (sprintf "%s#xpointer(1/%d)" (UriManager.string_of_uri baseuri) (tyno+1))
171 | Cic.MutConstruct (baseuri, tyno, consno, []) ->
172 UriManager.uri_of_string
173 (sprintf "%s#xpointer(1/%d/%d)" (UriManager.string_of_uri baseuri)
175 | _ -> raise (Invalid_argument "uri_of_term")
181 (fun term acc -> Cic.Prod (Cic.Anonymous, term, acc))
182 terms (Cic.Sort (Cic.Type (CicUniv.fresh ())))
184 let rec unpack = function
185 | Cic.Prod (Cic.Anonymous, term, Cic.Sort (Cic.Type _)) -> [term]
186 | Cic.Prod (Cic.Anonymous, term, tgt) -> term :: unpack tgt
190 let rec strip_prods n = function
192 | Cic.Prod (_, _, tgt) when n > 0 -> strip_prods (n-1) tgt
193 | _ -> failwith "not enough prods"
195 let params_of_obj = function
196 | Cic.Constant (_, _, _, params, _)
197 | Cic.Variable (_, _, _, params, _)
198 | Cic.CurrentProof (_, _, _, _, params, _)
199 | Cic.InductiveDefinition (_, params, _, _) ->
202 let attributes_of_obj = function
203 | Cic.Constant (_, _, _, _, attributes)
204 | Cic.Variable (_, _, _, _, attributes)
205 | Cic.CurrentProof (_, _, _, _, _, attributes)
206 | Cic.InductiveDefinition (_, _, _, attributes) ->
208 let rec mk_rels howmany from =
211 | _ -> (Cic.Rel (howmany + from)) :: (mk_rels (howmany-1) from)
215 | Cic.ARel (id,_,_,_)
219 | Cic.AImplicit (id,_)
221 | Cic.AProd (id,_,_,_)
222 | Cic.ALambda (id,_,_,_)
223 | Cic.ALetIn (id,_,_,_)
225 | Cic.AConst (id,_,_)
226 | Cic.AMutInd (id,_,_,_)
227 | Cic.AMutConstruct (id,_,_,_,_)
228 | Cic.AMutCase (id,_,_,_,_,_)
230 | Cic.ACoFix (id,_,_) -> id
233 let rec rehash_term =
234 let module C = Cic in
235 let recons uri = UriManager.uri_of_string (UriManager.string_of_uri uri) in
237 | (C.Rel _) as t -> t
238 | C.Var (uri,exp_named_subst) ->
239 let uri' = recons uri in
240 let exp_named_subst' =
242 (function (uri,t) ->(recons uri,rehash_term t))
245 C.Var (uri',exp_named_subst')
251 | Some t -> Some (rehash_term t)
255 | C.Sort (C.Type u) ->
256 CicUniv.assert_univ u;
257 C.Sort (C.Type (CicUniv.recons_univ u))
259 | C.Implicit _ as t -> t
260 | C.Cast (te,ty) -> C.Cast (rehash_term te, rehash_term ty)
261 | C.Prod (n,s,t) -> C.Prod (n, rehash_term s, rehash_term t)
262 | C.Lambda (n,s,t) -> C.Lambda (n, rehash_term s, rehash_term t)
263 | C.LetIn (n,s,t) -> C.LetIn (n, rehash_term s, rehash_term t)
264 | C.Appl l -> C.Appl (List.map rehash_term l)
265 | C.Const (uri,exp_named_subst) ->
266 let uri' = recons uri in
267 let exp_named_subst' =
269 (function (uri,t) -> (recons uri,rehash_term t)) exp_named_subst
271 C.Const (uri',exp_named_subst')
272 | C.MutInd (uri,tyno,exp_named_subst) ->
273 let uri' = recons uri in
274 let exp_named_subst' =
276 (function (uri,t) -> (recons uri,rehash_term t)) exp_named_subst
278 C.MutInd (uri',tyno,exp_named_subst')
279 | C.MutConstruct (uri,tyno,consno,exp_named_subst) ->
280 let uri' = recons uri in
281 let exp_named_subst' =
283 (function (uri,t) -> (recons uri,rehash_term t)) exp_named_subst
285 C.MutConstruct (uri',tyno,consno,exp_named_subst')
286 | C.MutCase (uri,i,outty,t,pl) ->
287 C.MutCase (recons uri, i, rehash_term outty, rehash_term t,
288 List.map rehash_term pl)
292 (fun (name, i, ty, bo) ->
293 (name, i, rehash_term ty, rehash_term bo))
300 (fun (name, ty, bo) -> (name, rehash_term ty, rehash_term bo))
303 C.CoFix (i, liftedfl)
306 let module C = Cic in
307 let recons uri = UriManager.uri_of_string (UriManager.string_of_uri uri) in
309 C.Constant (name,bo,ty,params,attrs) ->
313 | Some bo -> Some (rehash_term bo)
315 let ty' = rehash_term ty in
316 let params' = List.map recons params in
317 C.Constant (name, bo', ty', params',attrs)
318 | C.CurrentProof (name,conjs,bo,ty,params,attrs) ->
321 (function (i,hyps,ty) ->
325 | Some (name,C.Decl t) ->
326 Some (name,C.Decl (rehash_term t))
327 | Some (name,C.Def (bo,ty)) ->
331 | Some ty'' -> Some (rehash_term ty'')
333 Some (name,C.Def (rehash_term bo, ty'))) hyps,
337 let bo' = rehash_term bo in
338 let ty' = rehash_term ty in
339 let params' = List.map recons params in
340 C.CurrentProof (name, conjs', bo', ty', params',attrs)
341 | C.Variable (name,bo,ty,params,attrs) ->
345 | Some bo -> Some (rehash_term bo)
347 let ty' = rehash_term ty in
348 let params' = List.map recons params in
349 C.Variable (name, bo', ty', params',attrs)
350 | C.InductiveDefinition (tl,params,paramsno,attrs) ->
351 let params' = List.map recons params in
353 List.map (function (name, inductive, ty, constructors) ->
358 (function (name, ty) -> name, rehash_term ty)
362 C.InductiveDefinition (tl', params', paramsno, attrs)