1 (* Copyright (C) 2000, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
26 exception ReferenceToNonVariable;;
28 let prerr_endline _ = ();;
31 let rec fix_lambdas_wrt_type ty te =
33 let module S = CicSubstitution in
34 (* prerr_endline ("entering fix_lambdas: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm te); *)
37 (match CicReduction.whd [] te with
39 C.Lambda (n,s,fix_lambdas_wrt_type ty' te')
43 C.Prod (_,s,ty) -> s::(get_sources ty)
45 let sources = get_sources ty in
46 let no_sources = List.length sources in
47 let rec mk_rels n shift =
49 else (C.Rel (n + shift))::(mk_rels (n - 1) shift) in
50 let t' = S.lift no_sources t in
55 (C.Name "w",t',C.Appl ((C.Rel 1)::(mk_rels no_sources 1)))
57 C.Appl (t'::(mk_rels no_sources 0)) in
59 (fun source t -> C.Lambda (C.Name "y",source,t))
64 let rec fix_lambdas_wrt_type ty te =
66 let module S = CicSubstitution in
67 (* prerr_endline ("entering fix_lambdas: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm te); *)
69 C.Prod (_,_,ty'), C.Lambda (n,s,te') ->
70 C.Lambda (n,s,fix_lambdas_wrt_type ty' te')
71 | C.Prod (_,s,ty'), t ->
74 C.Prod (_,s,ty) -> s::(get_sources ty)
76 let sources = get_sources ty in
77 let no_sources = List.length sources in
78 let rec mk_rels n shift =
80 else (C.Rel (n + shift))::(mk_rels (n - 1) shift) in
81 let t' = S.lift no_sources t in
85 C.LetIn (C.Name "w",t',C.Appl ((C.Rel 1)::(mk_rels no_sources 1)))
86 | _ -> C.Appl (t'::(mk_rels no_sources 0)) in
88 (fun source t -> C.Lambda (C.Name "y",CicReduction.whd [] source,t)) sources t2
93 let rec fix_lambdas_wrt_type ty te =
95 let module S = CicSubstitution in
96 (* prerr_endline ("entering fix_lambdas: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm te); *)
98 C.Prod (_,_,ty'), C.Lambda (n,s,te') ->
99 C.Lambda (n,s,fix_lambdas_wrt_type ty' te')
100 | C.Prod (_,s,ty'), ((C.Appl (C.Const _ ::_)) as t) ->
101 (* const have a fixed arity *)
102 (* prerr_endline ("******** fl - eta expansion 0: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm te); *)
103 let t' = S.lift 1 t in
104 C.Lambda (C.Name "x",s,
106 (C.Name "H", fix_lambdas_wrt_type ty' t',
107 C.Appl [C.Rel 1;C.Rel 2]))
108 | C.Prod (_,s,ty'), C.Appl l ->
109 (* prerr_endline ("******** fl - eta expansion 1: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm te); *)
110 let l' = List.map (S.lift 1) l in
111 C.Lambda (C.Name "x",s,
112 fix_lambdas_wrt_type ty' (C.Appl (l'@[C.Rel 1])))
113 | C.Prod (_,s,ty'), _ ->
114 (* prerr_endline ("******** fl - eta expansion 2: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm te); *)
116 let te' = S.lift 1 te in
117 C.Lambda (C.Name "x",s,
118 fix_lambdas_wrt_type ty' (C.Appl [te';C.Rel 1]))
122 let fix_according_to_type ty hd tl =
123 let module C = Cic in
124 let module S = CicSubstitution in
125 let rec count_prods =
127 C.Prod (_,_,t) -> 1 + (count_prods t)
129 let expected_arity = count_prods ty in
130 let rec aux n ty tl res =
141 | [a] -> C.Appl (a::tl)
143 (* prerr_endline ("******* too many args: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm (C.Appl res)); *)
146 C.Appl res, C.Appl (C.Rel 1::(List.map (S.lift 1) tl))))
148 let name,source,target =
150 C.Prod (C.Name _ as n,s,t) -> n,s,t
151 | C.Prod (C.Anonymous, s,t) -> C.Name "z",s,t
152 | _ -> (* prods number may only increase for substitution *)
156 (* prerr_endline ("******* too few args: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm (C.Appl res)); *)
157 let res' = List.map (S.lift 1) res in
159 (name, source, aux (n-1) target [] (res'@[C.Rel 1]))
161 let hd' = fix_lambdas_wrt_type source hd in
162 (* (prerr_endline ("++++++prima :" ^(CicPp.ppterm hd));
163 prerr_endline ("++++++dopo :" ^(CicPp.ppterm hd'))); *)
164 aux (n-1) (S.subst hd' target) tl' (res@[hd']) in
165 aux expected_arity ty tl [hd]
168 let eta_fix metasenv context t =
169 let rec eta_fix' context t =
170 (* prerr_endline ("entering aux with: term=" ^ CicPp.ppterm t);
172 let module C = Cic in
173 let module S = CicSubstitution in
176 | C.Var (uri,exp_named_subst) ->
177 let exp_named_subst' = fix_exp_named_subst context exp_named_subst in
178 C.Var (uri,exp_named_subst')
180 let (_,canonical_context,_) = CicUtil.lookup_meta n metasenv in
186 | _, Some t -> Some (eta_fix' context t)
187 | Some _, None -> assert false (* due to typing rules *))
191 | C.Sort s -> C.Sort s
192 | C.Implicit _ as t -> t
193 | C.Cast (v,t) -> C.Cast (eta_fix' context v, eta_fix' context t)
196 (n, eta_fix' context s, eta_fix' ((Some (n,(C.Decl s)))::context) t)
197 | C.Lambda (n,s,t) ->
199 (n, eta_fix' context s, eta_fix' ((Some (n,(C.Decl s)))::context) t)
202 (n,eta_fix' context s,eta_fix' ((Some (n,(C.Def (s,None))))::context) t)
203 | C.Appl l as appl ->
204 let l' = List.map (eta_fix' context) l
210 CicTypeChecker.type_of_aux' metasenv context he
213 fix_according_to_type ty he tl
215 C.Const(uri,exp_named_subst)::l'' ->
217 (match CicEnvironment.get_obj uri with
218 C.Constant (_,_,ty,_) -> ty
219 | C.Variable _ -> raise ReferenceToVariable
220 | C.CurrentProof (_,_,_,_,params) -> raise ReferenceToCurrentProof
221 | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
223 fix_according_to_type
224 constant_type (C.Const(uri,exp_named_subst)) l''
226 | C.Const (uri,exp_named_subst) ->
227 let exp_named_subst' = fix_exp_named_subst context exp_named_subst in
228 C.Const (uri,exp_named_subst')
229 | C.MutInd (uri,tyno,exp_named_subst) ->
230 let exp_named_subst' = fix_exp_named_subst context exp_named_subst in
231 C.MutInd (uri, tyno, exp_named_subst')
232 | C.MutConstruct (uri,tyno,consno,exp_named_subst) ->
233 let exp_named_subst' = fix_exp_named_subst context exp_named_subst in
234 C.MutConstruct (uri, tyno, consno, exp_named_subst')
235 | C.MutCase (uri, tyno, outty, term, patterns) as prima ->
236 let outty' = eta_fix' context outty in
237 let term' = eta_fix' context term in
238 let patterns' = List.map (eta_fix' context) patterns in
239 let inductive_types,noparams =
240 let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in
242 Cic.Constant _ -> assert false
243 | Cic.Variable _ -> assert false
244 | Cic.CurrentProof _ -> assert false
245 | Cic.InductiveDefinition (l,_,n) -> l,n
247 let (_,_,_,constructors) = List.nth inductive_types tyno in
248 let constructor_types =
254 Cic.Prod (_,_,t') -> clean_up (S.subst a t') tl
255 | _ -> assert false) in
257 List.map (fun (_,t) -> t) constructors
260 CicTypeChecker.type_of_aux' metasenv context term
263 (match term_type with
264 C.Appl (hd::params) ->
265 let rec first_n n l =
269 a::tl -> a::(first_n (n-1) tl)
270 | _ -> assert false) in
273 clean_up t (first_n noparams params)) constructors
274 | _ -> prerr_endline ("QUA"); assert false) in
276 List.map2 fix_lambdas_wrt_type
277 constructor_types patterns in
278 C.MutCase (uri, tyno, outty',term',patterns2)
279 | C.Fix (funno, funs) ->
281 List.map (fun (n,_,ty,_) -> Some (C.Name n,(Cic.Decl ty))) funs in
284 (fun (name, no, ty, bo) ->
285 (name, no, eta_fix' context ty, eta_fix' (fun_types@context) bo))
287 | C.CoFix (funno, funs) ->
289 List.map (fun (n,ty,_) -> Some (C.Name n,(Cic.Decl ty))) funs in
292 (fun (name, ty, bo) ->
293 (name, eta_fix' context ty, eta_fix' (fun_types@context) bo)) funs)
294 and fix_exp_named_subst context exp_named_subst =
297 (fun newsubst (uri,t) ->
298 let t' = eta_fix' context t in
300 let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in
302 Cic.Variable (_,_,ty,_) ->
303 CicSubstitution.subst_vars newsubst ty
304 | _ -> raise ReferenceToNonVariable
306 let t'' = fix_according_to_type ty t' [] in
308 ) [] exp_named_subst)