1 (* Copyright (C) 2000, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
26 exception CicReductionInternalError;;
27 exception WrongUriToInductiveDefinition;;
31 let rec debug_aux t i =
33 let module U = UriManager in
34 CicPp.ppobj (C.Variable ("DEBUG", None, t)) ^ "\n" ^ i
38 print_endline (s ^ "\n" ^ List.fold_right debug_aux (t::env) "") ;
43 exception Impossible of int;;
44 exception ReferenceToDefinition;;
45 exception ReferenceToAxiom;;
46 exception ReferenceToVariable;;
47 exception ReferenceToCurrentProof;;
48 exception ReferenceToInductiveDefinition;;
50 (* takes a well-typed term *)
54 let module S = CicSubstitution in
56 C.Rel _ as t -> if l = [] then t else C.Appl (t::l)
58 (match CicEnvironment.get_cooked_obj uri 0 with
59 C.Definition _ -> raise ReferenceToDefinition
60 | C.Axiom _ -> raise ReferenceToAxiom
61 | C.CurrentProof _ -> raise ReferenceToCurrentProof
62 | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
63 | C.Variable (_,None,_) -> if l = [] then t else C.Appl (t::l)
64 | C.Variable (_,Some body,_) -> whdaux l body
66 | C.Meta _ as t -> if l = [] then t else C.Appl (t::l)
67 | C.Sort _ as t -> t (* l should be empty *)
68 | C.Implicit as t -> t
69 | C.Cast (te,ty) -> whdaux l te (*CSC E' GIUSTO BUTTARE IL CAST? *)
70 | C.Prod _ as t -> t (* l should be empty *)
71 | C.Lambda (name,s,t) as t' ->
74 | he::tl -> whdaux tl (S.subst he t)
75 (* when name is Anonimous the substitution should be superfluous *)
77 | C.LetIn (n,s,t) -> whdaux l (S.subst (whdaux [] s) t)
78 | C.Appl (he::tl) -> whdaux (tl@l) he
79 | C.Appl [] -> raise (Impossible 1)
80 | C.Const (uri,cookingsno) as t ->
81 (match CicEnvironment.get_cooked_obj uri cookingsno with
82 C.Definition (_,body,_,_) -> whdaux l body
83 | C.Axiom _ -> if l = [] then t else C.Appl (t::l)
84 | C.Variable _ -> raise ReferenceToVariable
85 | C.CurrentProof (_,_,body,_) -> whdaux l body
86 | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
88 | C.Abst _ as t -> t (*CSC l should be empty ????? *)
89 | C.MutInd (uri,_,_) as t -> if l = [] then t else C.Appl (t::l)
90 | C.MutConstruct (uri,_,_,_) as t -> if l = [] then t else C.Appl (t::l)
91 | C.MutCase (mutind,cookingsno,i,_,term,pl) as t ->
94 C.CoFix (i,fl) as t ->
95 let (_,_,body) = List.nth fl i in
97 let counter = ref (List.length fl) in
99 (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl)))
104 | C.Appl (C.CoFix (i,fl) :: tl) ->
105 let (_,_,body) = List.nth fl i in
107 let counter = ref (List.length fl) in
109 (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl)))
116 (match decofix (whdaux [] term) with
117 C.MutConstruct (_,_,_,j) -> whdaux l (List.nth pl (j-1))
118 | C.Appl (C.MutConstruct (_,_,_,j) :: tl) ->
119 let (arity, r, num_ingredients) =
120 match CicEnvironment.get_obj mutind with
121 C.InductiveDefinition (tl,ingredients,r) ->
122 let (_,_,arity,_) = List.nth tl i
123 and num_ingredients =
126 if k < cookingsno then i + List.length l else i
129 (arity,r,num_ingredients)
130 | _ -> raise WrongUriToInductiveDefinition
133 let num_to_eat = r + num_ingredients in
137 | (n,he::tl) when n > 0 -> eat_first (n - 1, tl)
138 | _ -> raise (Impossible 5)
140 eat_first (num_to_eat,tl)
142 whdaux (ts@l) (List.nth pl (j-1))
143 | C.Abst _| C.Cast _ | C.Implicit ->
144 raise (Impossible 2) (* we don't trust our whd ;-) *)
147 | C.Fix (i,fl) as t ->
148 let (_,recindex,_,body) = List.nth fl i in
151 Some (List.nth l recindex)
157 (match whdaux [] recparam with
159 | C.Appl ((C.MutConstruct _)::_) ->
161 let counter = ref (List.length fl) in
163 (fun _ -> decr counter ; S.subst (C.Fix (!counter,fl)))
167 (* Possible optimization: substituting whd recparam in l *)
169 | _ -> if l = [] then t else C.Appl (t::l)
171 | None -> if l = [] then t else C.Appl (t::l)
173 | C.CoFix (i,fl) as t ->
175 let (_,_,body) = List.nth fl i in
177 let counter = ref (List.length fl) in
179 (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl)))
185 if l = [] then t else C.Appl (t::l)
190 (* t1, t2 must be well-typed *)
191 let are_convertible t1 t2 =
192 let module U = UriManager in
194 debug t1 [t2] "PREWHD";
195 (* this trivial euristic cuts down the total time of about five times ;-) *)
196 (* this because most of the time t1 and t2 are "sintactically" the same *)
201 let module C = Cic in
204 debug t1' [t2'] "POSTWHD";
206 (C.Rel n1, C.Rel n2) -> n1 = n2
207 | (C.Var uri1, C.Var uri2) -> U.eq uri1 uri2
208 | (C.Meta n1, C.Meta n2) -> n1 = n2
209 | (C.Sort s1, C.Sort s2) -> true (*CSC da finire con gli universi *)
210 | (C.Prod (_,s1,t1), C.Prod(_,s2,t2)) ->
211 aux s1 s2 && aux t1 t2
212 | (C.Lambda (_,s1,t1), C.Lambda(_,s2,t2)) ->
213 aux s1 s2 && aux t1 t2
214 | (C.Appl l1, C.Appl l2) ->
216 List.fold_right2 (fun x y b -> aux x y && b) l1 l2 true
218 Invalid_argument _ -> false
220 | (C.Const (uri1,_), C.Const (uri2,_)) ->
221 (*CSC: questo commento e' chiaro o delirante? Io lo sto scrivendo *)
222 (*CSC: mentre sono delirante, quindi ... *)
223 (* WARNING: it is really important that the two cookingsno are not *)
224 (* checked for equality. This allows not to cook an object with no *)
225 (* ingredients only to update the cookingsno. E.g: if a term t has *)
226 (* a reference to a term t1 which does not depend on any variable *)
227 (* and t1 depends on a term t2 (that can't depend on any variable *)
228 (* because of t1), then t1 cooked at every level could be the same *)
229 (* as t1 cooked at level 0. Doing so, t2 will be extended in t *)
230 (* with cookingsno 0 and not 2. But this will not cause any trouble*)
231 (* if here we don't check that the two cookingsno are equal. *)
233 | (C.MutInd (uri1,k1,i1), C.MutInd (uri2,k2,i2)) ->
234 (* WARNIG: see the previous warning *)
235 U.eq uri1 uri2 && i1 = i2
236 | (C.MutConstruct (uri1,_,i1,j1), C.MutConstruct (uri2,_,i2,j2)) ->
237 (* WARNIG: see the previous warning *)
238 U.eq uri1 uri2 && i1 = i2 && j1 = j2
239 | (C.MutCase (uri1,_,i1,outtype1,term1,pl1),
240 C.MutCase (uri2,_,i2,outtype2,term2,pl2)) ->
241 (* WARNIG: see the previous warning *)
242 (* aux outtype1 outtype2 should be true if aux pl1 pl2 *)
243 U.eq uri1 uri2 && i1 = i2 && aux outtype1 outtype2 &&
245 List.fold_right2 (fun x y b -> b && aux x y) pl1 pl2 true
246 | (C.Fix (i1,fl1), C.Fix (i2,fl2)) ->
249 (fun (_,recindex1,ty1,bo1) (_,recindex2,ty2,bo2) b ->
250 b && recindex1 = recindex2 && aux ty1 ty2 && aux bo1 bo2)
252 | (C.CoFix (i1,fl1), C.CoFix (i2,fl2)) ->
255 (fun (_,ty1,bo1) (_,ty2,bo2) b ->
256 b && aux ty1 ty2 && aux bo1 bo2)
258 | (C.Abst _, _) | (_, C.Abst _) | (C.Cast _, _) | (_, C.Cast _)
259 | (C.Implicit, _) | (_, C.Implicit) ->
260 raise (Impossible 3) (* we don't trust our whd ;-) *)