1 (* Copyright (C) 2000, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
26 (* TODO unify exceptions *)
28 exception CicReductionInternalError;;
29 exception WrongUriToInductiveDefinition;;
30 exception Impossible of int;;
31 exception ReferenceToConstant;;
32 exception ReferenceToVariable;;
33 exception ReferenceToCurrentProof;;
34 exception ReferenceToInductiveDefinition;;
38 let rec debug_aux t i =
40 let module U = UriManager in
41 CicPp.ppobj (C.Variable ("DEBUG", None, t, [])) ^ "\n" ^ i
44 prerr_endline (s ^ "\n" ^ List.fold_right debug_aux (t::env) "")
47 module type Strategy =
52 val to_stack : Cic.term -> stack_term
53 val to_stack_list : Cic.term list -> stack_term list
54 val to_env : Cic.term -> env_term
55 val to_ens : Cic.term -> ens_term
58 (int -> env_term list -> ens_term Cic.explicit_named_substitution ->
59 Cic.term -> Cic.term) ->
60 stack_term -> Cic.term
63 (int -> env_term list -> ens_term Cic.explicit_named_substitution ->
64 Cic.term -> Cic.term) ->
65 stack_term list -> Cic.term list
66 val from_env : env_term -> Cic.term
67 val from_ens : ens_term -> Cic.term
70 (int * env_term list * ens_term Cic.explicit_named_substitution *
71 Cic.term * stack_term list -> Cic.term) ->
73 (int -> env_term list -> ens_term Cic.explicit_named_substitution ->
74 Cic.term -> Cic.term) ->
75 stack_term -> env_term
78 (int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term *
79 stack_term list -> Cic.term) ->
81 (int -> env_term list -> ens_term Cic.explicit_named_substitution ->
82 Cic.term -> Cic.term) ->
83 int -> env_term list -> ens_term Cic.explicit_named_substitution ->
85 val compute_to_stack :
87 (int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term *
88 stack_term list -> Cic.term) ->
90 (int -> env_term list -> ens_term Cic.explicit_named_substitution ->
91 Cic.term -> Cic.term) ->
92 int -> env_term list -> ens_term Cic.explicit_named_substitution ->
93 Cic.term -> stack_term
97 module CallByNameStrategy =
99 type stack_term = Cic.term
100 type env_term = Cic.term
101 type ens_term = Cic.term
103 let to_stack_list l = l
106 let from_stack ~unwind v = v
107 let from_stack_list ~unwind l = l
110 let stack_to_env ~reduce ~unwind v = v
111 let compute_to_stack ~reduce ~unwind k e ens t = unwind k e ens t
112 let compute_to_env ~reduce ~unwind k e ens t = unwind k e ens t
116 module CallByValueStrategy =
118 type stack_term = Cic.term
119 type env_term = Cic.term
120 type ens_term = Cic.term
122 let to_stack_list l = l
125 let from_stack ~unwind v = v
126 let from_stack_list ~unwind l = l
129 let stack_to_env ~reduce ~unwind v = v
130 let compute_to_stack ~reduce ~unwind k e ens t = reduce (k,e,ens,t,[])
131 let compute_to_env ~reduce ~unwind k e ens t = reduce (k,e,ens,t,[])
135 module CallByValueStrategyByNameOnConstants =
137 type stack_term = Cic.term
138 type env_term = Cic.term
139 type ens_term = Cic.term
141 let to_stack_list l = l
144 let from_stack ~unwind v = v
145 let from_stack_list ~unwind l = l
148 let stack_to_env ~reduce ~unwind v = v
149 let compute_to_stack ~reduce ~unwind k e ens =
151 Cic.Const _ as t -> unwind k e ens t
152 | t -> reduce (k,e,ens,t,[])
153 let compute_to_env ~reduce ~unwind k e ens =
155 Cic.Const _ as t -> unwind k e ens t
156 | t -> reduce (k,e,ens,t,[])
160 module LazyCallByValueStrategy =
162 type stack_term = Cic.term lazy_t
163 type env_term = Cic.term lazy_t
164 type ens_term = Cic.term lazy_t
165 let to_stack v = lazy v
166 let to_stack_list l = List.map to_stack l
167 let to_env v = lazy v
168 let to_ens v = lazy v
169 let from_stack ~unwind v = Lazy.force v
170 let from_stack_list ~unwind l = List.map (from_stack ~unwind) l
171 let from_env v = Lazy.force v
172 let from_ens v = Lazy.force v
173 let stack_to_env ~reduce ~unwind v = v
174 let compute_to_stack ~reduce ~unwind k e ens t = lazy (reduce (k,e,ens,t,[]))
175 let compute_to_env ~reduce ~unwind k e ens t = lazy (reduce (k,e,ens,t,[]))
179 module LazyCallByValueStrategyByNameOnConstants =
181 type stack_term = Cic.term lazy_t
182 type env_term = Cic.term lazy_t
183 type ens_term = Cic.term lazy_t
184 let to_stack v = lazy v
185 let to_stack_list l = List.map to_stack l
186 let to_env v = lazy v
187 let to_ens v = lazy v
188 let from_stack ~unwind v = Lazy.force v
189 let from_stack_list ~unwind l = List.map (from_stack ~unwind) l
190 let from_env v = Lazy.force v
191 let from_ens v = Lazy.force v
192 let stack_to_env ~reduce ~unwind v = v
193 let compute_to_stack ~reduce ~unwind k e ens t =
196 Cic.Const _ as t -> unwind k e ens t
197 | t -> reduce (k,e,ens,t,[]))
198 let compute_to_env ~reduce ~unwind k e ens t =
201 Cic.Const _ as t -> unwind k e ens t
202 | t -> reduce (k,e,ens,t,[]))
206 module LazyCallByNameStrategy =
208 type stack_term = Cic.term lazy_t
209 type env_term = Cic.term lazy_t
210 type ens_term = Cic.term lazy_t
211 let to_stack v = lazy v
212 let to_stack_list l = List.map to_stack l
213 let to_env v = lazy v
214 let to_ens v = lazy v
215 let from_stack ~unwind v = Lazy.force v
216 let from_stack_list ~unwind l = List.map (from_stack ~unwind) l
217 let from_env v = Lazy.force v
218 let from_ens v = Lazy.force v
219 let stack_to_env ~reduce ~unwind v = v
220 let compute_to_stack ~reduce ~unwind k e ens t = lazy (unwind k e ens t)
221 let compute_to_env ~reduce ~unwind k e ens t = lazy (unwind k e ens t)
226 LazyCallByValueByNameOnConstantsWhenFromStack_ByNameStrategyWhenFromEnvOrEns
229 type stack_term = reduce:bool -> Cic.term
230 type env_term = reduce:bool -> Cic.term
231 type ens_term = reduce:bool -> Cic.term
233 let value = lazy v in
234 fun ~reduce -> Lazy.force value
235 let to_stack_list l = List.map to_stack l
237 let value = lazy v in
238 fun ~reduce -> Lazy.force value
240 let value = lazy v in
241 fun ~reduce -> Lazy.force value
242 let from_stack ~unwind v = (v ~reduce:false)
243 let from_stack_list ~unwind l = List.map (from_stack ~unwind) l
244 let from_env v = (v ~reduce:true)
245 let from_ens v = (v ~reduce:true)
246 let stack_to_env ~reduce ~unwind v = v
247 let compute_to_stack ~reduce ~unwind k e ens t =
251 Cic.Const _ as t -> unwind k e ens t
252 | t -> reduce (k,e,ens,t,[])
255 lazy (unwind k e ens t)
258 if reduce then Lazy.force svalue else Lazy.force lvalue
259 let compute_to_env ~reduce ~unwind k e ens t =
263 Cic.Const _ as t -> unwind k e ens t
264 | t -> reduce (k,e,ens,t,[])
267 lazy (unwind k e ens t)
270 if reduce then Lazy.force svalue else Lazy.force lvalue
274 module ClosuresOnStackByValueFromEnvOrEnsStrategy =
277 int * Cic.term list * Cic.term Cic.explicit_named_substitution * Cic.term
278 type env_term = Cic.term
279 type ens_term = Cic.term
280 let to_stack v = (0,[],[],v)
281 let to_stack_list l = List.map to_stack l
284 let from_stack ~unwind (k,e,ens,t) = unwind k e ens t
285 let from_stack_list ~unwind l = List.map (from_stack ~unwind) l
288 let stack_to_env ~reduce ~unwind (k,e,ens,t) = reduce (k,e,ens,t,[])
289 let compute_to_env ~reduce ~unwind k e ens t =
291 let compute_to_stack ~reduce ~unwind k e ens t = (k,e,ens,t)
295 module ClosuresOnStackByValueFromEnvOrEnsByNameOnConstantsStrategy =
298 int * Cic.term list * Cic.term Cic.explicit_named_substitution * Cic.term
299 type env_term = Cic.term
300 type ens_term = Cic.term
301 let to_stack v = (0,[],[],v)
302 let to_stack_list l = List.map to_stack l
305 let from_stack ~unwind (k,e,ens,t) = unwind k e ens t
306 let from_stack_list ~unwind l = List.map (from_stack ~unwind) l
309 let stack_to_env ~reduce ~unwind (k,e,ens,t) =
311 Cic.Const _ as t -> unwind k e ens t
312 | t -> reduce (k,e,ens,t,[])
313 let compute_to_env ~reduce ~unwind k e ens t =
315 let compute_to_stack ~reduce ~unwind k e ens t = (k,e,ens,t)
319 module Reduction(RS : Strategy) =
321 type env = RS.env_term list
322 type ens = RS.ens_term Cic.explicit_named_substitution
323 type stack = RS.stack_term list
324 type config = int * env * ens * Cic.term * stack
326 (* k is the length of the environment e *)
327 (* m is the current depth inside the term *)
328 let unwind' m k e ens t =
329 let module C = Cic in
330 let module S = CicSubstitution in
331 if k = 0 && ens = [] then
334 let rec unwind_aux m =
337 if n <= m then t else
340 Some (RS.from_env (List.nth e (n-m-1)))
345 if m = 0 then t' else S.lift m t'
346 | None -> C.Rel (n-k)
348 | C.Var (uri,exp_named_subst) ->
350 prerr_endline ("%%%%%UWVAR " ^ String.concat " ; " (List.map (function (uri,t) -> UriManager.string_of_uri uri ^ " := " ^ CicPp.ppterm t) ens)) ;
352 if List.exists (function (uri',_) -> UriManager.eq uri' uri) ens then
353 CicSubstitution.lift m (RS.from_ens (List.assq uri ens))
357 CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri
360 C.Constant _ -> raise ReferenceToConstant
361 | C.Variable (_,_,_,params) -> params
362 | C.CurrentProof _ -> raise ReferenceToCurrentProof
363 | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
366 let exp_named_subst' =
367 substaux_in_exp_named_subst params exp_named_subst m
369 C.Var (uri,exp_named_subst')
375 | Some t -> Some (unwind_aux m t)
380 | C.Implicit _ as t -> t
381 | C.Cast (te,ty) -> C.Cast (unwind_aux m te, unwind_aux m ty) (*CSC ???*)
382 | C.Prod (n,s,t) -> C.Prod (n, unwind_aux m s, unwind_aux (m + 1) t)
383 | C.Lambda (n,s,t) -> C.Lambda (n, unwind_aux m s, unwind_aux (m + 1) t)
384 | C.LetIn (n,s,t) -> C.LetIn (n, unwind_aux m s, unwind_aux (m + 1) t)
385 | C.Appl l -> C.Appl (List.map (unwind_aux m) l)
386 | C.Const (uri,exp_named_subst) ->
389 CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri
392 C.Constant (_,_,_,params) -> params
393 | C.Variable _ -> raise ReferenceToVariable
394 | C.CurrentProof (_,_,_,_,params) -> params
395 | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
398 let exp_named_subst' =
399 substaux_in_exp_named_subst params exp_named_subst m
401 C.Const (uri,exp_named_subst')
402 | C.MutInd (uri,i,exp_named_subst) ->
405 CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri
408 C.Constant _ -> raise ReferenceToConstant
409 | C.Variable _ -> raise ReferenceToVariable
410 | C.CurrentProof _ -> raise ReferenceToCurrentProof
411 | C.InductiveDefinition (_,params,_) -> params
414 let exp_named_subst' =
415 substaux_in_exp_named_subst params exp_named_subst m
417 C.MutInd (uri,i,exp_named_subst')
418 | C.MutConstruct (uri,i,j,exp_named_subst) ->
421 CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri
424 C.Constant _ -> raise ReferenceToConstant
425 | C.Variable _ -> raise ReferenceToVariable
426 | C.CurrentProof _ -> raise ReferenceToCurrentProof
427 | C.InductiveDefinition (_,params,_) -> params
430 let exp_named_subst' =
431 substaux_in_exp_named_subst params exp_named_subst m
433 C.MutConstruct (uri,i,j,exp_named_subst')
434 | C.MutCase (sp,i,outt,t,pl) ->
435 C.MutCase (sp,i,unwind_aux m outt, unwind_aux m t,
436 List.map (unwind_aux m) pl)
438 let len = List.length fl in
441 (fun (name,i,ty,bo) ->
442 (name, i, unwind_aux m ty, unwind_aux (m+len) bo))
445 C.Fix (i, substitutedfl)
447 let len = List.length fl in
450 (fun (name,ty,bo) -> (name, unwind_aux m ty, unwind_aux (m+len) bo))
453 C.CoFix (i, substitutedfl)
454 and substaux_in_exp_named_subst params exp_named_subst' m =
455 (*CSC: Idea di Andrea di ordinare compatibilmente con l'ordine dei params
457 List.map (function (uri,t) -> uri, unwind_aux m t) exp_named_subst' @
458 (*CSC: qui liftiamo tutti gli ens anche se magari me ne servono la meta'!!! *)
459 List.map (function (uri,t) -> uri, CicSubstitution.lift m t) ens
461 let rec filter_and_lift =
465 let r = filter_and_lift tl in
467 (uri,(List.assq uri ens'))::r
472 filter_and_lift params
475 (*CSC: invece di concatenare sarebbe meglio rispettare l'ordine dei params *)
476 (*CSC: e' vero???? una veloce prova non sembra confermare la teoria *)
478 (*CSC: codice copiato e modificato dalla cicSubstitution.subst_vars *)
479 (*CSC: codice altamente inefficiente *)
480 let rec filter_and_lift already_instantiated =
485 (function (uri',_)-> not (UriManager.eq uri uri')) exp_named_subst'
487 not (List.mem uri already_instantiated)
491 (uri,CicSubstitution.lift m (RS.from_ens t)) ::
492 (filter_and_lift (uri::already_instantiated) tl)
493 | _::tl -> filter_and_lift already_instantiated tl
496 prerr_endline ("---- SKIPPO " ^ UriManager.string_of_uri uri) ;
497 if List.for_all (function (uri',_) -> not (UriManager.eq uri uri')) exp_named_subst' then prerr_endline "---- OK1" ;
498 prerr_endline ("++++ uri " ^ UriManager.string_of_uri uri ^ " not in " ^ String.concat " ; " (List.map UriManager.string_of_uri params)) ;
499 if List.mem uri params then prerr_endline "---- OK2" ;
503 List.map (function (uri,t) -> uri, unwind_aux m t) exp_named_subst' @
504 (filter_and_lift [] (List.rev ens))
513 let reduce ?(subst = []) context : config -> Cic.term =
514 let module C = Cic in
515 let module S = CicSubstitution in
518 (k, e, _, (C.Rel n as t), s) ->
521 Some (RS.from_env (List.nth e (n-1)))
526 match List.nth context (n - 1 - k) with
528 | Some (_,C.Decl _) -> None
529 | Some (_,C.Def (x,_)) -> Some (S.lift (n - k) x)
535 Some t' -> reduce (0,[],[],t',s)
539 else C.Appl (C.Rel (n-k)::(RS.from_stack_list ~unwind s))
541 | (k, e, ens, (C.Var (uri,exp_named_subst) as t), s) ->
542 if List.exists (function (uri',_) -> UriManager.eq uri' uri) ens then
543 reduce (0, [], [], RS.from_ens (List.assq uri ens), s)
546 CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri
549 C.Constant _ -> raise ReferenceToConstant
550 | C.CurrentProof _ -> raise ReferenceToCurrentProof
551 | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
552 | C.Variable (_,None,_,_) ->
553 let t' = unwind k e ens t in
554 if s = [] then t' else
555 C.Appl (t'::(RS.from_stack_list ~unwind s))
556 | C.Variable (_,Some body,_,_) ->
557 let ens' = push_exp_named_subst k e ens exp_named_subst in
558 reduce (0, [], ens', body, s)
560 | (k, e, ens, (C.Meta (n,l) as t), s) ->
562 let (_, term,_) = CicUtil.lookup_subst n subst in
563 reduce (k, e, ens,CicSubstitution.lift_meta l term,s)
564 with CicUtil.Subst_not_found _ ->
565 let t' = unwind k e ens t in
566 if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)))
567 | (k, e, _, (C.Sort _ as t), s) -> t (* s should be empty *)
568 | (k, e, _, (C.Implicit _ as t), s) -> t (* s should be empty *)
569 | (k, e, ens, (C.Cast (te,ty) as t), s) ->
570 reduce (k, e, ens, te, s) (* s should be empty *)
571 | (k, e, ens, (C.Prod _ as t), s) ->
572 unwind k e ens t (* s should be empty *)
573 | (k, e, ens, (C.Lambda (_,_,t) as t'), []) -> unwind k e ens t'
574 | (k, e, ens, C.Lambda (_,_,t), p::s) ->
575 reduce (k+1, (RS.stack_to_env ~reduce ~unwind p)::e, ens, t,s)
576 | (k, e, ens, (C.LetIn (_,m,t) as t'), s) ->
577 let m' = RS.compute_to_env ~reduce ~unwind k e ens m in
578 reduce (k+1, m'::e, ens, t, s)
579 | (_, _, _, C.Appl [], _) -> assert false
580 | (k, e, ens, C.Appl (he::tl), s) ->
583 (function t -> RS.compute_to_stack ~reduce ~unwind k e ens t) tl
585 reduce (k, e, ens, he, (List.append tl') s)
586 (* CSC: Old Dead Code
587 | (k, e, ens, C.Appl ((C.Lambda _ as he)::tl), s)
588 | (k, e, ens, C.Appl ((C.Const _ as he)::tl), s)
589 | (k, e, ens, C.Appl ((C.MutCase _ as he)::tl), s)
590 | (k, e, ens, C.Appl ((C.Fix _ as he)::tl), s) ->
591 (* strict evaluation, but constants are NOT unfolded *)
594 C.Const _ as t -> unwind k e ens t
595 | t -> reduce (k,e,ens,t,[])
597 let tl' = List.map red tl in
598 reduce (k, e, ens, he , List.append tl' s)
599 | (k, e, ens, C.Appl l, s) ->
600 C.Appl (List.append (List.map (unwind k e ens) l) s)
602 | (k, e, ens, (C.Const (uri,exp_named_subst) as t), s) ->
604 CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri
607 C.Constant (_,Some body,_,_) ->
608 let ens' = push_exp_named_subst k e ens exp_named_subst in
609 (* constants are closed *)
610 reduce (0, [], ens', body, s)
611 | C.Constant (_,None,_,_) ->
612 let t' = unwind k e ens t in
613 if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s))
614 | C.Variable _ -> raise ReferenceToVariable
615 | C.CurrentProof (_,_,body,_,_) ->
616 let ens' = push_exp_named_subst k e ens exp_named_subst in
617 (* constants are closed *)
618 reduce (0, [], ens', body, s)
619 | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
621 | (k, e, ens, (C.MutInd _ as t),s) ->
622 let t' = unwind k e ens t in
623 if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s))
624 | (k, e, ens, (C.MutConstruct _ as t),s) ->
625 let t' = unwind k e ens t in
626 if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s))
627 | (k, e, ens, (C.MutCase (mutind,i,_,term,pl) as t),s) ->
630 C.CoFix (i,fl) as t ->
631 let (_,_,body) = List.nth fl i in
633 let counter = ref (List.length fl) in
635 (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl)))
639 (* the term is the result of a reduction; *)
640 (* so it is already unwinded. *)
641 reduce (0,[],[],body',[])
642 | C.Appl (C.CoFix (i,fl) :: tl) ->
643 let (_,_,body) = List.nth fl i in
645 let counter = ref (List.length fl) in
647 (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl)))
651 (* the term is the result of a reduction; *)
652 (* so it is already unwinded. *)
653 reduce (0,[],[],body',RS.to_stack_list tl)
656 (match decofix (reduce (k,e,ens,term,[])) with
657 C.MutConstruct (_,_,j,_) ->
658 reduce (k, e, ens, (List.nth pl (j-1)), s)
659 | C.Appl (C.MutConstruct (_,_,j,_) :: tl) ->
662 CicEnvironment.get_cooked_obj CicUniv.empty_ugraph mutind
665 C.InductiveDefinition (tl,ingredients,r) ->
666 let (_,_,arity,_) = List.nth tl i in
668 | _ -> raise WrongUriToInductiveDefinition
671 let num_to_eat = r in
675 | (n,he::tl) when n > 0 -> eat_first (n - 1, tl)
676 | _ -> raise (Impossible 5)
678 eat_first (num_to_eat,tl)
680 (* ts are already unwinded because they are a sublist of tl *)
681 reduce (k, e, ens, (List.nth pl (j-1)), (RS.to_stack_list ts)@s)
682 | C.Cast _ | C.Implicit _ ->
683 raise (Impossible 2) (* we don't trust our whd ;-) *)
685 let t' = unwind k e ens t in
686 if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s))
688 | (k, e, ens, (C.Fix (i,fl) as t), s) ->
689 let (_,recindex,_,body) = List.nth fl i in
692 Some (RS.from_stack ~unwind (List.nth s recindex))
698 (match reduce (0,[],[],recparam,[]) with
699 (* match recparam with *)
701 | C.Appl ((C.MutConstruct _)::_) ->
704 let counter = ref (List.length fl) in
706 (fun _ -> decr counter ; S.subst (C.Fix (!counter,fl)))
710 reduce (k, e, ens, body', s) *)
712 let leng = List.length fl in
714 let unwind_fl (name,recindex,typ,body) =
715 (name,recindex,unwind k e ens typ,
716 unwind' leng k e ens body)
718 List.map unwind_fl fl
721 let counter = ref 0 in
722 let rec build_env e =
723 if !counter = leng then e
726 build_env ((RS.to_env (C.Fix (!counter -1, fl')))::e))
730 reduce (k+leng, new_env, ens, body, s)
732 let t' = unwind k e ens t in
733 if s = [] then t' else
734 C.Appl (t'::(RS.from_stack_list ~unwind s))
737 let t' = unwind k e ens t in
738 if s = [] then t' else
739 C.Appl (t'::(RS.from_stack_list ~unwind s))
741 | (k, e, ens, (C.CoFix (i,fl) as t),s) ->
742 let t' = unwind k e ens t in
743 if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s))
744 and push_exp_named_subst k e ens =
748 push_exp_named_subst k e ((uri,RS.to_ens (unwind k e ens t))::ens) tl
753 let rec whd context t =
755 reduce context (0, [], [], t, [])
757 prerr_endline (CicPp.ppterm t) ;
762 let rec whd ?(subst=[]) context t =
763 reduce ~subst context (0, [], [], t, [])
769 let res = whd context t in
770 let rescsc = CicReductionNaif.whd context t in
771 if not (CicReductionNaif.are_convertible context res rescsc) then
773 prerr_endline ("PRIMA: " ^ CicPp.ppterm t) ;
775 prerr_endline ("DOPO: " ^ CicPp.ppterm res) ;
777 prerr_endline ("CSC: " ^ CicPp.ppterm rescsc) ;
779 CicReductionNaif.fdebug := 0 ;
780 let _ = CicReductionNaif.are_convertible context res rescsc in
792 module R = Reduction CallByNameStrategy;;
793 module R = Reduction CallByValueStrategy;;
794 module R = Reduction CallByValueStrategyByNameOnConstants;;
795 module R = Reduction LazyCallByValueStrategy;;
796 module R = Reduction LazyCallByValueStrategyByNameOnConstants;;
797 module R = Reduction LazyCallByNameStrategy;;
799 LazyCallByValueByNameOnConstantsWhenFromStack_ByNameStrategyWhenFromEnvOrEns;;
800 module R = Reduction ClosuresOnStackByValueFromEnvOrEnsStrategy;;
802 ClosuresOnStackByValueFromEnvOrEnsByNameOnConstantsStrategy;;
804 module R = Reduction(ClosuresOnStackByValueFromEnvOrEnsStrategy);;
805 module U = UriManager;;
809 (* mimic ocaml (<< 3.08) "=" behaviour. Tests physical equality first then
810 * fallbacks to structural equality *)
811 let (===) x y = (Pervasives.compare x y = 0)
813 (* t1, t2 must be well-typed *)
814 let are_convertible ?(subst=[]) ?(metasenv=[]) =
815 let rec aux test_equality_only context t1 t2 ugraph =
816 let aux2 test_equality_only t1 t2 ugraph =
818 (* this trivial euristic cuts down the total time of about five times ;-) *)
819 (* this because most of the time t1 and t2 are "sintactically" the same *)
824 let module C = Cic in
826 (C.Rel n1, C.Rel n2) -> (n1 = n2),ugraph
827 | (C.Var (uri1,exp_named_subst1), C.Var (uri2,exp_named_subst2)) ->
828 if U.eq uri1 uri2 then
831 (fun (uri1,x) (uri2,y) (b,ugraph) ->
832 let b',ugraph' = aux test_equality_only context x y ugraph in
833 (U.eq uri1 uri2 && b' && b),ugraph'
834 ) exp_named_subst1 exp_named_subst2 (true,ugraph)
836 Invalid_argument _ -> false,ugraph
840 | (C.Meta (n1,l1), C.Meta (n2,l2)) ->
843 let l1 = CicUtil.clean_up_local_context subst metasenv n1 l1 in
844 let l2 = CicUtil.clean_up_local_context subst metasenv n2 l2 in
846 (fun (b,ugraph) t1 t2 ->
850 | _,None -> true,ugraph
851 | Some t1',Some t2' ->
852 aux test_equality_only context t1' t2' ugraph
855 ) (true,ugraph) l1 l2
857 if b2 then true,ugraph1 else false,ugraph
860 (* TASSI: CONSTRAINTS *)
861 | (C.Sort (C.Type t1), C.Sort (C.Type t2)) when test_equality_only ->
862 true,(CicUniv.add_eq t2 t1 ugraph)
863 (* TASSI: CONSTRAINTS *)
864 | (C.Sort (C.Type t1), C.Sort (C.Type t2)) ->
865 true,(CicUniv.add_ge t2 t1 ugraph)
866 (* TASSI: CONSTRAINTS *)
867 | (C.Sort s1, C.Sort (C.Type _)) -> (not test_equality_only),ugraph
868 (* TASSI: CONSTRAINTS *)
869 | (C.Sort s1, C.Sort s2) -> (s1 = s2),ugraph
870 | (C.Prod (name1,s1,t1), C.Prod(_,s2,t2)) ->
871 let b',ugraph' = aux true context s1 s2 ugraph in
873 aux test_equality_only ((Some (name1, (C.Decl s1)))::context)
877 | (C.Lambda (name1,s1,t1), C.Lambda(_,s2,t2)) ->
878 let b',ugraph' = aux test_equality_only context s1 s2 ugraph in
880 aux test_equality_only ((Some (name1, (C.Decl s1)))::context)
884 | (C.LetIn (name1,s1,t1), C.LetIn(_,s2,t2)) ->
885 let b',ugraph' = aux test_equality_only context s1 s2 ugraph in
887 aux test_equality_only
888 ((Some (name1, (C.Def (s1,None))))::context) t1 t2 ugraph'
891 | (C.Appl l1, C.Appl l2) ->
894 (fun x y (b,ugraph) ->
896 aux test_equality_only context x y ugraph
898 false,ugraph) l1 l2 (true,ugraph)
900 Invalid_argument _ -> false,ugraph
902 | (C.Const (uri1,exp_named_subst1), C.Const (uri2,exp_named_subst2)) ->
903 let b' = U.eq uri1 uri2 in
907 (fun (uri1,x) (uri2,y) (b,ugraph) ->
908 if b && U.eq uri1 uri2 then
909 aux test_equality_only context x y ugraph
912 ) exp_named_subst1 exp_named_subst2 (true,ugraph)
914 Invalid_argument _ -> false,ugraph
918 | (C.MutInd (uri1,i1,exp_named_subst1),
919 C.MutInd (uri2,i2,exp_named_subst2)
921 let b' = U.eq uri1 uri2 && i1 = i2 in
925 (fun (uri1,x) (uri2,y) (b,ugraph) ->
926 if b && U.eq uri1 uri2 then
927 aux test_equality_only context x y ugraph
930 ) exp_named_subst1 exp_named_subst2 (true,ugraph)
932 Invalid_argument _ -> false,ugraph
936 | (C.MutConstruct (uri1,i1,j1,exp_named_subst1),
937 C.MutConstruct (uri2,i2,j2,exp_named_subst2)
939 let b' = U.eq uri1 uri2 && i1 = i2 && j1 = j2 in
943 (fun (uri1,x) (uri2,y) (b,ugraph) ->
944 if b && U.eq uri1 uri2 then
945 aux test_equality_only context x y ugraph
948 ) exp_named_subst1 exp_named_subst2 (true,ugraph)
950 Invalid_argument _ -> false,ugraph
954 | (C.MutCase (uri1,i1,outtype1,term1,pl1),
955 C.MutCase (uri2,i2,outtype2,term2,pl2)) ->
956 let b' = U.eq uri1 uri2 && i1 = i2 in
958 let b'',ugraph''=aux test_equality_only context
959 outtype1 outtype2 ugraph in
961 let b''',ugraph'''= aux test_equality_only context
962 term1 term2 ugraph'' in
964 (fun x y (b,ugraph) ->
966 aux test_equality_only context x y ugraph
969 pl1 pl2 (true,ugraph''')
974 | (C.Fix (i1,fl1), C.Fix (i2,fl2)) ->
976 List.map (function (n,_,ty,_) -> Some (C.Name n,(C.Decl ty))) fl1
980 (fun (_,recindex1,ty1,bo1) (_,recindex2,ty2,bo2) (b,ugraph) ->
981 if b && recindex1 = recindex2 then
982 let b',ugraph' = aux test_equality_only context ty1 ty2
985 aux test_equality_only (tys@context) bo1 bo2 ugraph'
990 fl1 fl2 (true,ugraph)
993 | (C.CoFix (i1,fl1), C.CoFix (i2,fl2)) ->
995 List.map (function (n,ty,_) -> Some (C.Name n,(C.Decl ty))) fl1
999 (fun (_,ty1,bo1) (_,ty2,bo2) (b,ugraph) ->
1001 let b',ugraph' = aux test_equality_only context ty1 ty2
1004 aux test_equality_only (tys@context) bo1 bo2 ugraph'
1009 fl1 fl2 (true,ugraph)
1012 | (C.Cast _, _) | (_, C.Cast _)
1013 | (C.Implicit _, _) | (_, C.Implicit _) ->
1015 | (_,_) -> false,ugraph
1019 debug t1 [t2] "PREWHD";
1023 prerr_endline (CicPp.ppterm t1);
1024 prerr_endline (CicPp.ppterm (whd ~subst context t1));
1025 prerr_endline (CicPp.ppterm t2);
1026 prerr_endline (CicPp.ppterm (whd ~subst context t2))
1028 let t1' = whd ~subst context t1 in
1029 let t2' = whd ~subst context t2 in
1030 debug t1' [t2'] "POSTWHD";
1031 aux2 test_equality_only t1' t2' ugraph
1034 aux false (*c t1 t2 ugraph *)