1 (* Copyright (C) 2000-2002, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
26 (***************************************************************************)
30 (* Andrea Asperti <asperti@cs.unibo.it> *)
34 (***************************************************************************)
36 let mpres_document pres_box =
37 let obj2xml obj = Mpresentation.print_mpres (fun _ -> assert false) obj in
38 Ast2pres.add_xml_declaration (Box.box2xml ~obj2xml pres_box)
40 let mml_of_cic_sequent metasenv sequent =
41 let asequent,ids_to_terms,
42 ids_to_father_ids,ids_to_inner_sorts,ids_to_hypotheses =
43 Cic2acic.asequent_of_sequent metasenv sequent in
44 let content_sequent = Cic2content.map_sequent asequent in
46 (Sequent2pres.sequent2pres ~ids_to_inner_sorts content_sequent) in
47 let xmlpres = mpres_document pres_sequent in
48 Xml2Gdome.document_of_xml DomMisc.domImpl xmlpres,
50 (ids_to_terms,ids_to_father_ids,ids_to_hypotheses,ids_to_inner_sorts))
52 let mml_of_cic_object obj =
53 let (annobj, ids_to_terms, ids_to_father_ids, ids_to_inner_sorts,
54 ids_to_inner_types, ids_to_conjectures, ids_to_hypotheses)
56 Cic2acic.acic_object_of_cic_object obj
59 Cic2content.annobj2content ~ids_to_inner_sorts ~ids_to_inner_types annobj
61 let pres = Content2pres.content2pres ~ids_to_inner_sorts content in
62 let xmlpres = mpres_document pres in
63 let mathml = Xml2Gdome.document_of_xml DomMisc.domImpl xmlpres in
65 (ids_to_terms, ids_to_father_ids, ids_to_conjectures, ids_to_hypotheses,
66 ids_to_inner_sorts,ids_to_inner_types)))