1 (* Copyright (C) 2000, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
26 (***************************************************************************)
30 (* Andrea Asperti <asperti@cs.unibo.it> *)
33 (***************************************************************************)
38 split (n-1) (List.tl l) in
43 let is_big_general countterm p =
44 let maxsize = Cexpr2pres.maxsize in
45 let module Con = Content in
46 let rec countp current_size p =
47 if current_size > maxsize then current_size
49 let c1 = (countcontext current_size p.Con.proof_context) in
50 if c1 > maxsize then c1
52 let c2 = (countapplycontext c1 p.Con.proof_apply_context) in
53 if c2 > maxsize then c2
55 countconclude c2 p.Con.proof_conclude
58 countcontext current_size c =
59 List.fold_left countcontextitem current_size c
61 countcontextitem current_size e =
62 if current_size > maxsize then maxsize
66 (match d.Con.dec_name with
67 Some s -> current_size + 4 + (String.length s)
68 | None -> prerr_endline "NO NAME!!"; assert false)
70 (match h.Con.dec_name with
71 Some s -> current_size + 4 + (String.length s)
72 | None -> prerr_endline "NO NAME!!"; assert false)
73 | `Proof p -> countp current_size p
75 (match d.Con.def_name with
77 let c1 = (current_size + 4 + (String.length s)) in
78 (countterm c1 d.Con.def_term)
80 prerr_endline "NO NAME!!"; assert false)
81 | `Joint ho -> maxsize + 1) (* we assume is big *)
83 countapplycontext current_size ac =
84 List.fold_left countp current_size ac
86 countconclude current_size co =
87 if current_size > maxsize then current_size
89 let c1 = countargs current_size co.Con.conclude_args in
90 if c1 > maxsize then c1
92 (match co.Con.conclude_conclusion with
93 Some concl -> countterm c1 concl
96 countargs current_size args =
97 List.fold_left countarg current_size args
99 countarg current_size arg =
100 if current_size > maxsize then current_size
103 Con.Aux _ -> current_size
104 | Con.Premise prem ->
105 (match prem.Con.premise_binder with
106 Some s -> current_size + (String.length s)
107 | None -> current_size + 7)
109 current_size + (String.length lemma.Con.lemma_name)
110 | Con.Term t -> countterm current_size t
111 | Con.ArgProof p -> countp current_size p
112 | Con.ArgMethod s -> (maxsize + 1)) in
113 let size = (countp 0 p) in
117 let is_big = is_big_general (Cexpr2pres.countterm)
121 let module Con = Content in
124 | `Hypothesis d -> d.Con.dec_id
125 | `Proof p -> p.Con.proof_id
126 | `Definition d -> d.Con.def_id
127 | `Joint jo -> jo.Con.joint_id
130 let make_row ?(attrs=[]) items concl =
131 let module P = Mpresentation in
133 P.Mtable _ -> (* big! *)
134 P.Mtable (attrs@[None,"align","baseline 1"; None,"equalrows","false";
135 None,"columnalign","left"],
136 [P.Mtr([],[P.Mtd ([],P.Mrow([],items))]);
137 P.Mtr ([],[P.Mtd ([],P.indented concl)])])
139 P.Mrow(attrs,items@[P.Mspace([None,"width","0.1cm"]);concl]))
142 let make_concl ?(attrs=[]) verb concl =
143 let module P = Mpresentation in
145 P.Mtable _ -> (* big! *)
146 P.Mtable (attrs@[None,"align","baseline 1"; None,"equalrows","false";
147 None,"columnalign","left"],
148 [P.Mtr([],[P.Mtd ([],P.Mtext([None,"mathcolor","Red"],verb))]);
149 P.Mtr ([],[P.Mtd ([],P.indented concl)])])
152 [P.Mtext([None,"mathcolor","Red"],verb);
153 P.Mspace([None,"width","0.1cm"]);
157 let make_args_for_apply term2pres args =
158 let module Con = Content in
159 let module P = Mpresentation in
160 let make_arg_for_apply is_first arg row =
163 Con.Aux n -> assert false
164 | Con.Premise prem ->
166 (match prem.Con.premise_binder with
171 P.Mi([],lemma.Con.lemma_name)::row
175 else P.Mi([],"_")::row
180 if is_first then res else P.smallskip::res
184 make_arg_for_apply true hd
185 (List.fold_right (make_arg_for_apply false) tl [])
189 let rec justification term2pres p =
190 let module Con = Content in
191 let module P = Mpresentation in
192 if ((p.Con.proof_conclude.Con.conclude_method = "Exact") or
193 ((p.Con.proof_context = []) &
194 (p.Con.proof_apply_context = []) &
195 (p.Con.proof_conclude.Con.conclude_method = "Apply"))) then
197 make_args_for_apply term2pres p.Con.proof_conclude.Con.conclude_args in
199 P.Mtext([None,"mathcolor","Red"],"by")::P.Mspace([None,"width","0.1cm"])::
200 P.Mo([],"(")::pres_args@[P.Mo([],")")])
201 else proof2pres term2pres p
203 and proof2pres term2pres p =
204 let rec proof2pres p =
205 let module Con = Content in
206 let module P = Mpresentation in
211 | `Hypothesis _ -> true
213 ((List.filter is_decl p.Con.proof_context) != []) in
214 let omit_conclusion = (not indent) && (p.Con.proof_context != []) in
216 (match p.Con.proof_conclude.Con.conclude_conclusion with
218 | Some t -> Some (term2pres t)) in
221 conclude2pres p.Con.proof_conclude indent omit_conclusion in
223 acontext2pres p.Con.proof_apply_context presconclude indent in
224 context2pres p.Con.proof_context presacontext in
225 match p.Con.proof_name with
233 ([None,"actiontype","toggle" ; None,"selection","1"],
234 [P.Mtext [] "proof" ; body])
238 ([None,"actiontype","toggle" ; None,"selection","1"],
239 [(make_concl ~attrs:[Some "helm", "xref", p.Con.proof_id]
240 "proof of" ac); body])
242 P.Mtable ([None,"align","baseline 1"; None,"equalrows","false";
243 None,"columnalign","left"],
244 [P.Mtr ([],[P.Mtd ([],P.Mfenced([],[P.Mtext ([],name)]))]);
245 P.Mtr ([],[P.Mtd ([], P.indented action)])])
247 P.Mtable ([None,"align","baseline 1"; None,"equalrows","false";
248 None,"columnalign","left";Some "helm", "xref", p.Con.proof_id],
249 [P.Mtr ([],[P.Mtd ([],P.Mfenced([],[P.Mtext ([],name)]))]);
250 P.Mtr ([],[P.Mtd ([], P.indented action)])]) *)
252 and context2pres c continuation =
253 (* we generate a subtable for each context element, for selection
255 The table generated by the head-element does not have an xref;
256 the whole context-proof is already selectable *)
257 let module P = Mpresentation in
263 (fun ce continuation ->
264 let xref = get_xref ce in
265 P.Mtable([None,"align","baseline 1"; None,"equalrows","false";
266 None,"columnalign","left"; Some "helm", "xref", xref ],
267 [P.Mtr([Some "helm", "xref", "ce_"^xref],[P.Mtd ([],ce2pres ce)]);
268 P.Mtr([],[P.Mtd ([], continuation)])])) tl continuation in
269 let hd_xref= get_xref hd in
270 P.Mtable([None,"align","baseline 1"; None,"equalrows","false";
271 None,"columnalign","left"],
272 [P.Mtr([Some "helm", "xref", "ce_"^hd_xref],
273 [P.Mtd ([],ce2pres hd)]);
274 P.Mtr([],[P.Mtd ([], continuation')])])
277 let module P = Mpresentation in
278 let module Con = Content in
281 (match d.Con.dec_name with
283 let ty = term2pres d.Con.dec_type in
285 [P.Mtext([None,"mathcolor","Red"],"Assume");
286 P.Mspace([None,"width","0.1cm"]);
291 prerr_endline "NO NAME!!"; assert false)
293 (match h.Con.dec_name with
295 let ty = term2pres h.Con.dec_type in
297 [P.Mtext([None,"mathcolor","Red"],"Suppose");
298 P.Mspace([None,"width","0.1cm"]);
302 P.Mspace([None,"width","0.1cm"]);
305 prerr_endline "NO NAME!!"; assert false)
309 (match d.Con.def_name with
311 let term = term2pres d.Con.def_term in
318 prerr_endline "NO NAME!!"; assert false)
320 P.Mtext ([],"jointdef")
322 and acontext2pres ac continuation indent =
323 let module Con = Content in
324 let module P = Mpresentation in
326 (fun p continuation ->
329 P.indented (proof2pres p)
332 P.Mtable([None,"align","baseline 1"; None,"equalrows","false";
333 None,"columnalign","left"; Some "helm","xref",p.Con.proof_id],
334 [P.Mtr([Some "helm","xref","ace_"^p.Con.proof_id],[P.Mtd ([],hd)]);
335 P.Mtr([],[P.Mtd ([], continuation)])])) ac continuation
337 and conclude2pres conclude indent omit_conclusion =
338 let module Con = Content in
339 let module P = Mpresentation in
341 match conclude.Con.conclude_conclusion with
343 not omit_conclusion or
344 (* CSC: I ignore the omit_conclusion flag in this case. *)
345 (* CSC: Is this the correct behaviour? In the stylesheets *)
346 (* CSC: we simply generated nothing (i.e. the output type *)
347 (* CSC: of the function should become an option. *)
348 conclude.Con.conclude_method = "BU_Conversion" ->
349 let concl = (term2pres t) in
350 if conclude.Con.conclude_method = "BU_Conversion" then
351 make_concl "that is equivalent to" concl
352 else if conclude.Con.conclude_method = "FalseInd" then
353 (* false ind is in charge to add the conclusion *)
356 let conclude_body = conclude_aux conclude in
358 if conclude.Con.conclude_method = "TD_Conversion" then
359 make_concl "that is equivalent to" concl
360 else make_concl "we conclude" concl in
361 P.Mtable ([None,"align","baseline 1"; None,"equalrows","false";
362 None,"columnalign","left"],
363 [P.Mtr ([],[P.Mtd ([],conclude_body)]);
364 P.Mtr ([],[P.Mtd ([],ann_concl)])])
365 | _ -> conclude_aux conclude in
367 P.indented (P.Mrow ([Some "helm", "xref", conclude.Con.conclude_id],
370 P.Mrow ([Some "helm", "xref", conclude.Con.conclude_id],[tconclude_body])
373 and conclude_aux conclude =
374 let module Con = Content in
375 let module P = Mpresentation in
376 if conclude.Con.conclude_method = "TD_Conversion" then
378 (match conclude.Con.conclude_conclusion with
379 None -> P.Mtext([],"NO EXPECTED!!!")
380 | Some c -> term2pres c) in
382 (match conclude.Con.conclude_args with
383 [Con.ArgProof p] -> p
384 | _ -> assert false) in
386 (match subproof.Con.proof_conclude.Con.conclude_conclusion with
387 None -> P.Mtext([],"NO SYNTH!!!")
388 | Some c -> (term2pres c)) in
390 ([None,"align","baseline 1"; None,"equalrows","false"; None,"columnalign","left"],
391 [P.Mtr([],[P.Mtd([],make_concl "we must prove" expected)]);
392 P.Mtr([],[P.Mtd([],make_concl "or equivalently" synth)]);
393 P.Mtr([],[P.Mtd([],proof2pres subproof)])])
394 else if conclude.Con.conclude_method = "BU_Conversion" then
396 else if conclude.Con.conclude_method = "Exact" then
398 (match conclude.Con.conclude_args with
399 [Con.Term t] -> term2pres t
400 | _ -> assert false) in
401 (match conclude.Con.conclude_conclusion with
404 [P.Mtext [None, "mathcolor", "red"] "Consider" ; P.smallskip; arg]
405 | Some c -> let conclusion = term2pres c in
407 [arg; P.Mspace([None,"width","0.1cm"]);P.Mtext([],"proves")]
410 else if conclude.Con.conclude_method = "Intros+LetTac" then
411 (match conclude.Con.conclude_args with
412 [Con.ArgProof p] -> proof2pres p
416 (match conclude.Con.conclude_conclusion with
417 None -> P.Mtext([],"NO Conclusion!!!")
418 | Some c -> term2pres c) in
419 (match conclude.Con.conclude_args with
422 ([None,"align","baseline 1"; None,"equalrows","false";
423 None,"columnalign","left"],
424 [P.Mtr([],[P.Mtd([],proof2pres p)]);
426 (make_concl "we proved 1" conclusion))])]);
429 else if (conclude.Con.conclude_method = "ByInduction") then
431 else if (conclude.Con.conclude_method = "Exists") then
433 else if (conclude.Con.conclude_method = "AndInd") then
435 else if (conclude.Con.conclude_method = "FalseInd") then
437 else if (conclude.Con.conclude_method = "Rewrite") then
439 (match (List.nth conclude.Con.conclude_args 6) with
440 Con.ArgProof p -> justification term2pres p
441 | _ -> assert false) in
443 (match List.nth conclude.Con.conclude_args 2 with
444 Con.Term t -> term2pres t
445 | _ -> assert false) in
447 (match List.nth conclude.Con.conclude_args 5 with
448 Con.Term t -> term2pres t
449 | _ -> assert false) in
450 P.Mtable ([None,"align","baseline 1";None,"equalrows","false";
451 None,"columnalign","left"],
452 [P.Mtr ([],[P.Mtd ([],P.Mrow([],[
453 P.Mtext([None,"mathcolor","Red"],"rewrite");
454 P.Mspace([None,"width","0.1cm"]);term1;
455 P.Mspace([None,"width","0.1cm"]);
456 P.Mtext([None,"mathcolor","Red"],"with");
457 P.Mspace([None,"width","0.1cm"]);term2]))]);
458 P.Mtr ([],[P.Mtd ([],P.indented justif)])]);
459 else if conclude.Con.conclude_method = "Apply" then
461 make_args_for_apply term2pres conclude.Con.conclude_args in
463 P.Mtext([None,"mathcolor","Red"],"by")::
464 P.Mspace([None,"width","0.1cm"])::
465 P.Mo([],"(")::pres_args@[P.Mo([],")")])
468 ([None,"align","baseline 1"; None,"equalrows","false"; None,"columnalign","left"],
469 [P.Mtr ([],[P.Mtd ([],P.Mtext([],"Apply method" ^ conclude.Con.conclude_method ^ " to"))]);
474 ([None,"align","baseline 1"; None,"equalrows","false";
475 None,"columnalign","left"],
476 args2pres conclude.Con.conclude_args))))])])
479 let module P = Mpresentation in
481 (function a -> P.Mtr ([], [P.Mtd ([], arg2pres a)])) l
484 let module P = Mpresentation in
485 let module Con = Content in
488 P.Mtext ([],"aux " ^ n)
489 | Con.Premise prem ->
490 P.Mtext ([],"premise")
498 P.Mtext ([],"method")
500 and byinduction conclude =
501 let module P = Mpresentation in
502 let module Con = Content in
503 let proof_conclusion =
504 (match conclude.Con.conclude_conclusion with
505 None -> P.Mtext([],"No conclusion???")
506 | Some t -> term2pres t) in
507 let inductive_arg,args_for_cases =
508 (match conclude.Con.conclude_args with
510 let l1,l2 = split (int_of_string n) tl in
511 let last_pos = (List.length l2)-1 in
512 List.nth l2 last_pos,l1
513 | _ -> assert false) in
516 (match inductive_arg with
518 P.Mtext ([],"an aux???")
519 | Con.Premise prem ->
520 (match prem.Con.premise_binder with
521 None -> P.Mtext ([],"the previous result")
522 | Some n -> P.Mi([],n))
523 | Con.Lemma lemma -> P.Mi([],lemma.Con.lemma_name)
527 P.Mtext ([],"a proof???")
529 P.Mtext ([],"a method???")) in
530 (make_concl "we proceede by induction on" arg) in
532 (make_concl "to prove" proof_conclusion) in
534 ([None,"align","baseline 1"; None,"equalrows","false";
535 None,"columnalign","left"],
536 P.Mtr ([],[P.Mtd ([],induction_on)])::
537 P.Mtr ([],[P.Mtd ([],to_prove)])::
538 (make_cases args_for_cases))
540 and make_cases args_for_cases =
541 let module P = Mpresentation in
543 (fun p -> P.Mtr ([],[P.Mtd ([],make_case p)])) args_for_cases
546 let module P = Mpresentation in
547 let module Con = Content in
551 (match p.Con.proof_name with
552 None -> P.Mtext([],"no name for case!!")
553 | Some n -> P.Mi([],n)) in
557 `Hypothesis h -> h.Con.dec_inductive
558 | _ -> false) p.Con.proof_context in
567 (match h.Con.dec_name with
570 [P.Mspace([None,"width","0.1cm"]);
573 (term2pres h.Con.dec_type)]
574 | _ -> [P.Mtext ([],"???")]) in
577 P.Mtr ([],[P.Mtd ([],P.Mrow([],
578 P.Mtext([],"Case")::P.Mspace([None,"width","0.1cm"])::name::pattern_aux@
579 [P.Mspace([None,"width","0.1cm"]);
580 P.Mtext([],"->")]))]) in
582 (match p.Con.proof_conclude.Con.conclude_conclusion with
583 None -> P.Mtext([],"No conclusion!!!")
584 | Some t -> term2pres t) in
587 P.indented (make_concl "the thesis becomes" subconcl))]) in
588 let induction_hypothesis =
593 P.Mtr([],[P.Mtd([], P.indented
594 (P.Mtext([],"by induction hypothesis we know:")))]) in
599 (match h.Con.dec_name with
602 P.indented (P.Mrow ([],
606 P.Mspace([None,"width","0.1cm"]);
607 term2pres h.Con.dec_type]))
608 | _ -> assert false in
611 (function ce -> P.Mtr ([], [P.Mtd ([], make_hyp ce)]))
615 acontext2pres_old p.Con.proof_apply_context true in *)
616 let body = conclude2pres p.Con.proof_conclude true false in
619 match p.Con.proof_apply_context with
620 [] -> p.Con.proof_conclude.Con.conclude_id
621 | {Con.proof_id = id}::_ -> id
623 P.Maction([None,"actiontype","toggle" ; None,"selection","1"],
626 ([None,"mathcolor","Red" ;
627 Some "helm", "xref", acontext_id],"Proof")) ;
628 acontext2pres p.Con.proof_apply_context body true]) in
629 P.Mtable ([None,"align","baseline 1"; None,"equalrows","false";
630 None,"columnalign","left"],
631 pattern::asubconcl::induction_hypothesis@
632 [P.Mtr([],[P.Mtd([],presacontext)])])
635 and falseind conclude =
636 let module P = Mpresentation in
637 let module Con = Content in
638 let proof_conclusion =
639 (match conclude.Con.conclude_conclusion with
640 None -> P.Mtext([],"No conclusion???")
641 | Some t -> term2pres t) in
643 (match conclude.Con.conclude_args with
644 [Con.Aux(n);_;case_arg] -> case_arg
647 List.map (ContentPp.parg 0) conclude.Con.conclude_args;
651 Con.Aux n -> assert false
652 | Con.Premise prem ->
653 (match prem.Con.premise_binder with
654 None -> [P.Mtext([],"Contradiction, hence")]
656 [P.Mi([],n);P.smallskip;P.Mtext([],"is contradictory, hence")])
658 [P.Mi([],lemma.Con.lemma_name);P.smallskip;P.Mtext([],"is contradictory, hence")]
659 | _ -> assert false) in
660 (* let body = proof2pres {proof with Con.proof_context = tl} in *)
661 make_row arg proof_conclusion
663 and andind conclude =
664 let module P = Mpresentation in
665 let module Con = Content in
666 let proof_conclusion =
667 (match conclude.Con.conclude_conclusion with
668 None -> P.Mtext([],"No conclusion???")
669 | Some t -> term2pres t) in
671 (match conclude.Con.conclude_args with
672 [Con.Aux(n);_;Con.ArgProof proof;case_arg] -> proof,case_arg
675 List.map (ContentPp.parg 0) conclude.Con.conclude_args;
679 Con.Aux n -> assert false
680 | Con.Premise prem ->
681 (match prem.Con.premise_binder with
683 | Some n -> [P.Mtext([],"by");P.smallskip;P.Mi([],n)])
685 [P.Mtext([],"by");P.smallskip;P.Mi([],lemma.Con.lemma_name)]
686 | _ -> assert false) in
687 match proof.Con.proof_context with
688 `Hypothesis hyp1::`Hypothesis hyp2::tl ->
690 (match hyp.Con.dec_name with
696 P.Mi([],get_name hyp1);
699 term2pres hyp1.Con.dec_type]) in
703 P.Mi([],get_name hyp2);
706 term2pres hyp2.Con.dec_type]) in
707 (* let body = proof2pres {proof with Con.proof_context = tl} in *)
708 let body = conclude2pres proof.Con.proof_conclude false true in
710 acontext2pres proof.Con.proof_apply_context body false in
712 ([None,"align","baseline 1"; None,"equalrows","false";
713 None,"columnalign","left"],
714 [P.Mtr ([],[P.Mtd ([],
715 P.Mrow([],arg@[P.smallskip;P.Mtext([],"we have")]))]);
716 P.Mtr ([],[P.Mtd ([],preshyp1)]);
717 P.Mtr ([],[P.Mtd ([],P.Mtext([],"and"))]);
718 P.Mtr ([],[P.Mtd ([],preshyp2)]);
719 P.Mtr ([],[P.Mtd ([],presacontext)])]);
722 and exists conclude =
723 let module P = Mpresentation in
724 let module Con = Content in
725 let proof_conclusion =
726 (match conclude.Con.conclude_conclusion with
727 None -> P.Mtext([],"No conclusion???")
728 | Some t -> term2pres t) in
730 (match conclude.Con.conclude_args with
731 [Con.Aux(n);_;Con.ArgProof proof;_] -> proof
734 List.map (ContentPp.parg 0) conclude.Con.conclude_args;
736 match proof.Con.proof_context with
737 `Declaration decl::`Hypothesis hyp::tl
738 | `Hypothesis decl::`Hypothesis hyp::tl ->
740 (match decl.Con.dec_name with
745 [P.Mtext([None,"mathcolor","Red"],"let");
747 P.Mi([],get_name decl);
748 P.Mtext([],":"); term2pres decl.Con.dec_type]) in
751 [P.Mtext([None,"mathcolor","Red"],"such that");
754 P.Mi([],get_name hyp);
757 term2pres hyp.Con.dec_type]) in
758 (* let body = proof2pres {proof with Con.proof_context = tl} in *)
759 let body = conclude2pres proof.Con.proof_conclude false true in
761 acontext2pres proof.Con.proof_apply_context body false in
763 ([None,"align","baseline 1"; None,"equalrows","false";
764 None,"columnalign","left"],
765 [P.Mtr ([],[P.Mtd ([],presdecl)]);
766 P.Mtr ([],[P.Mtd ([],suchthat)]);
767 P.Mtr ([],[P.Mtd ([],presacontext)])]);
768 | _ -> assert false in
775 let content2pres term2pres (id,params,metasenv,obj) =
776 let module K = Content in
777 let module P = Mpresentation in
779 `Def (K.Const,thesis,`Proof p) ->
781 [None,"align","baseline 1";
782 None,"equalrows","false";
783 None,"columnalign","left";
784 None,"helm:xref","id"]
789 ("UNFINISHED PROOF" ^ id ^"(" ^
790 String.concat " ; " (List.map UriManager.string_of_uri params)^
795 [P.Mtext [] "THESIS:"])] ;
801 term2pres thesis])]] @
807 (* Conjectures are in their own table to make *)
808 (* diffing the DOM trees easier. *)
810 [None,"align","baseline 1";
811 None,"equalrows","false";
812 None,"columnalign","left"]
816 [P.Mtext [] "CONJECTURES:"])])::
822 (P.Mrow [Some "helm", "xref", id]
830 | Some (`Declaration d)
831 | Some (`Hypothesis d) ->
833 { K.dec_name = dec_name ;
834 K.dec_type = ty } = d
843 | Some (`Definition d) ->
845 { K.def_name = def_name ;
846 K.def_term = bo } = d
856 let proof_name = p.K.proof_name in
859 (match proof_name with
863 proof2pres term2pres p]
864 ) (List.rev context) @
866 [ P.Mi [] (string_of_int n) ;
877 [proof2pres term2pres p])]])
881 let content2pres ~ids_to_inner_sorts =
884 (Cexpr2pres.cexpr2pres_charcount
885 (Content_expressions.acic2cexpr ids_to_inner_sorts p)))