1 (* Copyright (C) 2002, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
26 (* Da rimuovere, solo per debug*)
27 let print_context ctx =
31 | Cic.Anonymous -> "_"
34 (fun i (output,context) ->
35 let (newoutput,context') =
37 Some (n,Cic.Decl t) ->
38 print_name n ^ ":" ^ CicPp.pp t context ^ "\n", (Some n)::context
39 | Some (n,Cic.Def (t,None)) ->
40 print_name n ^ ":=" ^ CicPp.pp t context ^ "\n", (Some n)::context
42 "_ ?= _\n", None::context
43 | Some (_,Cic.Def (_,Some _)) -> assert false
45 output^newoutput,context'
50 let search_theorems_in_context status =
51 let (proof, goal) = status in
53 let module R = CicReduction in
54 let module S = CicSubstitution in
55 let module PET = ProofEngineTypes in
56 let module PT = PrimitiveTactics in
57 let _,metasenv,_,_ = proof in
58 let _,context,ty = CicUtil.lookup_meta goal metasenv in
59 let rec find n = function
64 Some (PET.apply_tactic
65 (PT.apply_tac ~term:(C.Rel n)) status )
69 Some res -> res::(find (n+1) tl)
70 | None -> find (n+1) tl)
81 let new_search_theorems f proof goal depth gtl sign =
82 let choices = f (proof,goal)
85 (function (proof, goallist) ->
86 (proof,(List.map (function g -> (g,depth)) goallist)@gtl, sign))
90 exception NoOtherChoices;;
91 let rec auto dbd = function
93 | (proof, [], sign)::tl -> (proof, [], sign)::tl
94 | (proof, (goal,0)::_, _)::tl -> auto dbd tl
95 | (proof, (((goal,depth)::gtl) as allg), sign)::tl ->
96 (* first we check if the metavariable has not been already
97 closed as a side effect by some other application *)
98 let facts = (depth = 1) in
99 let name,metasenv,p,statement = proof in
102 let (_, ey ,ty) = CicUtil.lookup_meta goal metasenv in
107 (* the goal is still there *)
109 prerr_endline ("CURRENT GOAL = " ^ (CicPp.ppterm ty));
110 prerr_endline ("CURRENT PROOF = " ^ (CicPp.ppterm p));
111 prerr_endline ("CURRENT HYP = " ^ (fst (print_context ey)));
113 (* if the goal contains metavariables we use the input
114 signature for at_most constraints *)
115 let is_meta_closed = CicUtil.is_meta_closed ty in
117 if is_meta_closed then
118 None, Some (MetadataConstraints.signature_of ty)
119 else sign,sign in (* maybe the union ? *)
122 search_theorems_in_context
123 proof goal (depth-1) [] new_sign in
129 ~dbd ~facts:facts ?signature:sign status))
130 proof goal (depth-1) [] new_sign in
131 (* we proceed depth-first on the current goal. This is
132 a MAJOR optimization, since in case of success, and
133 if the goal is meta_closed, we may just drop the alternatives
134 tl1, avoiding useless backtracking. *)
136 local_choices@global_choices in
137 (match (auto dbd all_choices)
140 | (proof,[],_)::tl1 ->
142 let gtl' = List.map fst gtl in
143 if (gtl = [] || is_meta_closed) then
148 (function (p,l,s) -> (p,l@gtl,s)) tl1)
150 (proof,gtl,sign)::tl2@tl in
153 | None -> auto dbd ((proof,gtl,sign)::tl)
157 let auto_tac ~(dbd:Mysql.dbd) =
158 let auto_tac dbh (proof,goal) =
159 prerr_endline "Entro in Auto";
160 match (auto dbd [(proof, [(goal,depth)],None)]) with
161 [] -> prerr_endline("Auto failed");
162 raise (ProofEngineTypes.Fail "No Applicable theorem")
164 prerr_endline "AUTO_TAC HA FINITO";
168 ProofEngineTypes.mk_tactic (auto_tac dbd)
172 (************************** EXPERIMENTAL VERSION ****************************)
174 (* In this versions of auto_tac we maintain an hash table of all inspected
175 goals. We assume that the context is invariant for application.
176 To this aim, it is essential to sall hint_verbose, that in turns calls
183 | Yes of Cic.term * int
186 let inspected_goals = Hashtbl.create 503;;
188 let compare_goal_list proof goal1 goal2 =
189 let _,metasenv,_,_ = proof in
190 let (_, ey1, ty1) = CicUtil.lookup_meta goal1 metasenv in
191 let (_, ey2, ty2) = CicUtil.lookup_meta goal2 metasenv in
192 let ty_sort1,_ = CicTypeChecker.type_of_aux' metasenv ey1 ty1
193 CicUniv.empty_ugraph in
194 let ty_sort2,_ = CicTypeChecker.type_of_aux' metasenv ey2 ty2
195 CicUniv.empty_ugraph in
197 let b,_ = CicReduction.are_convertible ey1 (Cic.Sort Cic.Prop) ty_sort1
198 CicUniv.empty_ugraph in
202 let b,_ = CicReduction.are_convertible ey2 (Cic.Sort Cic.Prop) ty_sort2
203 CicUniv.empty_ugraph in
208 let search_theorems_in_context status =
209 let (proof, goal) = status in
210 let module C = Cic in
211 let module R = CicReduction in
212 let module S = CicSubstitution in
213 let module PET = ProofEngineTypes in
214 let module PT = PrimitiveTactics in
215 let _,metasenv,_,_ = proof in
216 let _,context,ty = CicUtil.lookup_meta goal metasenv in
217 let rec find n = function
222 let (subst,(proof, goal_list)) =
223 PT.apply_tac_verbose ~term:(C.Rel n) status in
225 List.stable_sort (compare_goal_list proof) goal_list in
226 Some (subst,(proof, goal_list))
228 PET.Fail _ -> None in
230 Some res -> res::(find (n+1) tl)
231 | None -> find (n+1) tl)
239 let new_search_theorems f proof goal depth sign =
240 let choices = f (proof,goal)
243 (function (subst,(proof, goallist)) ->
244 (subst,(proof,(List.map (function g -> (g,depth)) goallist), sign)))
248 exception NoOtherChoices;;
250 let rec auto_single dbd proof goal ey ty depth width sign
252 if depth = 0 then [] else
253 let facts = (depth = 1) in
254 let _,metasenv,_,_ = proof in
255 (* first of all we check if the goal has been already
258 try Hashtbl.find inspected_goals ty
259 with Not_found -> NotYetInspected in
260 let is_meta_closed = CicUtil.is_meta_closed ty in
265 prerr_endline "ALREADY PROVED!!!!!!!!!!!!!!!!!!!!!!!!!!!!";
266 prerr_endline (CicPp.ppterm ty);
269 (* if we just apply the subtitution, the type
270 is irrelevant: we may use Implicit, since it will
272 CicMetaSubst.apply_subst
273 [(goal,(ey, bo, Cic.Implicit None))] in
275 ProofEngineHelpers.subst_meta_and_metasenv_in_proof
276 proof goal subst_in metasenv in
277 [(subst_in,(proof,[],sign))]
278 | No d when (d >= depth) ->
280 prerr_endline "PRUNED!!!!!!!!!!!!!!!!!!!!!!!!!!!!";
282 [] (* the empty list means no choices, i.e. failure *)
286 prerr_endline ("CURRENT GOAL = " ^ (CicPp.ppterm ty));
287 prerr_endline ("CURRENT PROOF = " ^ (CicPp.ppterm p));
288 prerr_endline ("CURRENT HYP = " ^ (fst (print_context ey)));
291 if is_meta_closed then
292 None, Some (MetadataConstraints.signature_of ty)
293 else sign,sign in (* maybe the union ? *)
296 search_theorems_in_context
297 proof goal (depth-1) new_sign in
302 (MetadataQuery.experimental_hint
303 ~dbd ~facts:facts ?signature:sign status))
304 proof goal (depth-1) new_sign in
306 local_choices@global_choices in
309 (fun (_, (_, goals1, _)) (_, (_, goals2, _)) ->
311 (List.length goals1) (List.length goals2))
313 (match (auto_new dbd width sorted_choices)
316 (* no proof has been found; we update the
318 (* if is_meta_closed then *)
319 Hashtbl.add inspected_goals ty (No depth);
321 | (subst,(proof,[],sign))::tl1 ->
322 (* a proof for goal has been found:
323 in order to get the proof we apply subst to
325 if is_meta_closed then
328 CicMkImplicit.identity_relocation_list_for_metavariable ey in
330 subst (Cic.Meta(goal,irl)) in
331 Hashtbl.add inspected_goals
332 ty (Yes (meta_proof,depth));
336 CicTypeChecker.type_of_aux' metasenv ey meta_proof CicUniv.empty_ugraph
338 if not (cty = ty) then
340 prerr_endline ("ty = "^CicPp.ppterm ty);
341 prerr_endline ("cty = "^CicPp.ppterm cty);
344 Hashtbl.add inspected_goals
345 ty (Yes (meta_proof,depth));
349 (subst,(proof,[],sign))::tl1
353 and auto_new dbd width = function
355 | (subst,(proof, [], sign))::tl -> (subst,(proof, [], sign))::tl
356 | (subst,(proof, (goal,0)::_, _))::tl -> auto_new dbd width tl
357 | (subst,(proof, (goal,depth)::goals, _))::tl when
358 (List.length goals) > width -> auto_new dbd width tl
359 | (subst,(proof, (goal,depth)::gtl, sign))::tl ->
360 let _,metasenv,p,_ = proof in
364 CicUtil.lookup_meta goal metasenv in
369 let (_, ey ,ty) = CicUtil.lookup_meta goal metasenv in
371 match (auto_single dbd proof goal ey ty depth
372 (width - (List.length gtl)) sign)
374 [] -> auto_new dbd width tl
375 | (local_subst,(proof,[],sign))::tl1 ->
376 let new_subst f t = f (subst t) in
377 let is_meta_closed = CicUtil.is_meta_closed ty in
379 if is_meta_closed then
380 (new_subst local_subst,(proof,gtl,sign))::tl
384 (function (f,(p,l,s)) -> (new_subst f,(p,l@gtl,s))) tl1)
386 (new_subst local_subst,(proof,gtl,sign))::tl2@tl in
387 let sorted_choices = all_choices in
390 (fun (_, (_, goals1, _)) (_, (_, goals2, _)) ->
392 (List.length goals1) (List.length goals2))
395 auto_new dbd width sorted_choices
398 | None -> auto_new dbd width ((subst,(proof, gtl, sign))::tl)
402 let auto_tac_new ~(dbd:Mysql.dbd) =
403 let auto_tac dbd (proof,goal) =
404 Hashtbl.clear inspected_goals;
405 prerr_endline "Entro in Auto";
407 match (auto_new dbd width [id,(proof, [(goal,depth)],None)]) with
408 [] -> prerr_endline("Auto failed");
409 raise (ProofEngineTypes.Fail "No Applicable theorem")
410 | (_,(proof,[],_))::_ ->
411 prerr_endline "AUTO_TAC HA FINITO";
412 let _,_,p,_ = proof in
413 prerr_endline (CicPp.ppterm p);
417 ProofEngineTypes.mk_tactic (auto_tac dbd)