1 (* Copyright (C) 2002, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
27 let absurd_tac ~term ~status:((proof,goal) as status) =
29 let module U = UriManager in
30 let module P = PrimitiveTactics in
31 let _,metasenv,_,_ = proof in
32 let _,context,ty = List.find (function (m,_,_) -> m=goal) metasenv in
33 if ((CicTypeChecker.type_of_aux' metasenv context term) = (C.Sort C.Prop)) (* ma questo controllo serve?? *)
35 ~term:(C.Appl [(C.Const ((U.uri_of_string "cic:/Coq/Init/Logic/absurd.con") , [] )) ; term ; ty]) ~status
36 else raise (ProofEngineTypes.Fail "Absurd: Not a Proposition")
40 let contradiction_tac ~status =
42 let module U = UriManager in
43 let module P = PrimitiveTactics in
44 let module T = Tacticals in
47 ~start:(P.intros_tac ())
51 (EliminationTactics.elim_type_tac
53 (C.MutInd ((U.uri_of_string "cic:/Coq/Init/Logic/False.ind"), 0, [])))
54 ~continuation: VariousTactics.assumption_tac)
57 (ProofEngineTypes.Fail "Assumption: No such assumption") -> raise (ProofEngineTypes.Fail "Contradiction: No such assumption")
58 (* sarebbe piu' elegante se Assumtion sollevasse un'eccezione tutta sua che questa cattura, magari con l'aiuto di try_tactics *)
61 (* Questa era in fourierR.ml
62 (* !!!!! fix !!!!!!!!!! *)
63 let contradiction_tac ~status:(proof,goal)=
65 ~start:(PrimitiveTactics.intros_tac ~name:"bo?" ) (*inutile sia questo che quello prima della chiamata*)
66 ~continuation:(Tacticals.then_
67 ~start:(VariousTactics.elim_type_tac ~term:_False)
68 ~continuation:(assumption_tac))