1 (* Copyright (C) 2002, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
26 exception Bad_pattern of string
28 let new_meta_of_proof ~proof:(_, metasenv, _, _) =
29 CicMkImplicit.new_meta metasenv []
31 let subst_meta_in_proof proof meta term newmetasenv =
32 let uri,metasenv,bo,ty = proof in
33 (* empty context is ok for term since it wont be used by apply_subst *)
34 (* hack: since we do not know the context and the type of term, we
35 create a substitution with cc =[] and type = Implicit; they will be
36 in any case dropped by apply_subst, but it would be better to rewrite
37 the code. Cannot we just use apply_subst_metasenv, etc. ?? *)
38 let subst_in = CicMetaSubst.apply_subst [meta,([], term,Cic.Implicit None)] in
40 newmetasenv @ (List.filter (function (m,_,_) -> m <> meta) metasenv)
44 (function i,canonical_context,ty ->
45 let canonical_context' =
48 Some (n,Cic.Decl s) -> Some (n,Cic.Decl (subst_in s))
49 | Some (n,Cic.Def (s,None)) -> Some (n,Cic.Def ((subst_in s),None))
51 | Some (_,Cic.Def (_,Some _)) -> assert false
54 i,canonical_context',(subst_in ty)
57 let bo' = subst_in bo in
58 (* Metavariables can appear also in the *statement* of the theorem
59 * since the parser does not reject as statements terms with
60 * metavariable therein *)
61 let ty' = subst_in ty in
62 let newproof = uri,metasenv'',bo',ty' in
63 (newproof, metasenv'')
65 (*CSC: commento vecchio *)
66 (* refine_meta_with_brand_new_metasenv meta term subst_in newmetasenv *)
67 (* This (heavy) function must be called when a tactic can instantiate old *)
68 (* metavariables (i.e. existential variables). It substitues the metasenv *)
69 (* of the proof with the result of removing [meta] from the domain of *)
70 (* [newmetasenv]. Then it replaces Cic.Meta [meta] with [term] everywhere *)
71 (* in the current proof. Finally it applies [apply_subst_replacing] to *)
73 (*CSC: A questo punto perche' passare un bo' gia' istantiato, se tanto poi *)
74 (*CSC: ci ripasso sopra apply_subst!!! *)
75 (*CSC: Attenzione! Ora questa funzione applica anche [subst_in] a *)
76 (*CSC: [newmetasenv]. *)
77 let subst_meta_and_metasenv_in_proof proof meta subst_in newmetasenv =
78 let (uri,_,bo,ty) = proof in
79 let bo' = subst_in bo in
80 (* Metavariables can appear also in the *statement* of the theorem
81 * since the parser does not reject as statements terms with
82 * metavariable therein *)
83 let ty' = subst_in ty in
86 (fun metasenv_entry i ->
87 match metasenv_entry with
88 (m,canonical_context,ty) when m <> meta ->
89 let canonical_context' =
93 | Some (i,Cic.Decl t) -> Some (i,Cic.Decl (subst_in t))
94 | Some (i,Cic.Def (t,None)) ->
95 Some (i,Cic.Def ((subst_in t),None))
96 | Some (_,Cic.Def (_,Some _)) -> assert false
99 (m,canonical_context',subst_in ty)::i
103 let newproof = uri,metasenv',bo',ty' in
104 (newproof, metasenv')
106 let compare_metasenvs ~oldmetasenv ~newmetasenv =
107 List.map (function (i,_,_) -> i)
110 not (List.exists (fun (j,_,_) -> i=j) oldmetasenv)) newmetasenv)
113 (** finds the _pointers_ to subterms that are alpha-equivalent to wanted in t *)
114 let find_subterms ~eq ~wanted t =
122 | Cic.Meta (_, ctx) ->
127 | Some t -> find w t @ acc
129 | Cic.Lambda (_, t1, t2)
130 | Cic.Prod (_, t1, t2)
131 | Cic.LetIn (_, t1, t2) ->
132 find w t1 @ find (CicSubstitution.lift 1 w) t2
134 List.fold_left (fun acc t -> find w t @ acc) [] l
135 | Cic.Cast (t, ty) -> find w t @ find w ty
136 | Cic.Implicit _ -> assert false
137 | Cic.Const (_, esubst)
138 | Cic.Var (_, esubst)
139 | Cic.MutInd (_, _, esubst)
140 | Cic.MutConstruct (_, _, _, esubst) ->
141 List.fold_left (fun acc (_, t) -> find w t @ acc) [] esubst
142 | Cic.MutCase (_, _, outty, indterm, patterns) ->
143 find w outty @ find w indterm @
144 List.fold_left (fun acc p -> find w p @ acc) [] patterns
145 | Cic.Fix (_, funl) ->
147 fun acc (_, _, ty, bo) -> find w ty @ find w bo @ acc
149 | Cic.CoFix (_, funl) ->
151 fun acc (_, ty, bo) -> find w ty @ find w bo @ acc
156 let select ~term ~pattern =
157 let add_ctx i name entry =
158 (Some (name, entry)) :: i
160 (* i is the number of binder traversed *)
161 let rec aux i pattern term =
162 match (pattern, term) with
163 | Cic.Implicit (Some `Hole), t -> [i,t]
164 | Cic.Implicit (Some `Type), t -> []
165 | Cic.Implicit None,_ -> []
166 | Cic.Meta (_, ctxt1), Cic.Meta (_, ctxt2) ->
170 (match (t1, t2) with Some t1, Some t2 -> aux i t1 t2 | _ -> []))
172 | Cic.Cast (te1, ty1), Cic.Cast (te2, ty2) -> aux i te1 te2 @ aux i ty1 ty2
173 | Cic.Prod (Cic.Anonymous, s1, t1), Cic.Prod (name, s2, t2)
174 | Cic.Lambda (Cic.Anonymous, s1, t1), Cic.Lambda (name, s2, t2) ->
175 aux i s1 s2 @ aux (add_ctx i name (Cic.Decl s2)) t1 t2
176 | Cic.Prod (Cic.Name n1, s1, t1),
177 Cic.Prod ((Cic.Name n2) as name , s2, t2)
178 | Cic.Lambda (Cic.Name n1, s1, t1),
179 Cic.Lambda ((Cic.Name n2) as name, s2, t2) when n1 = n2->
180 aux i s1 s2 @ aux (add_ctx i name (Cic.Decl s2)) t1 t2
181 | Cic.Prod (name1, s1, t1), Cic.Prod (name2, s2, t2)
182 | Cic.Lambda (name1, s1, t1), Cic.Lambda (name2, s2, t2) -> []
183 | Cic.LetIn (Cic.Anonymous, s1, t1), Cic.LetIn (name, s2, t2) ->
184 aux i s1 s2 @ aux (add_ctx i name (Cic.Def (s2,None))) t1 t2
185 | Cic.LetIn (Cic.Name n1, s1, t1),
186 Cic.LetIn ((Cic.Name n2) as name, s2, t2) when n1 = n2->
187 aux i s1 s2 @ aux (add_ctx i name (Cic.Def (s2,None))) t1 t2
188 | Cic.LetIn (name1, s1, t1), Cic.LetIn (name2, s2, t2) -> []
189 | Cic.Appl terms1, Cic.Appl terms2 -> auxs i terms1 terms2
190 | Cic.Var (_, subst1), Cic.Var (_, subst2)
191 | Cic.Const (_, subst1), Cic.Const (_, subst2)
192 | Cic.MutInd (_, _, subst1), Cic.MutInd (_, _, subst2)
193 | Cic.MutConstruct (_, _, _, subst1), Cic.MutConstruct (_, _, _, subst2) ->
194 auxs i (List.map snd subst1) (List.map snd subst2)
195 | Cic.MutCase (_, _, out1, t1, pat1), Cic.MutCase (_ , _, out2, t2, pat2) ->
196 aux i out1 out2 @ aux i t1 t2 @ auxs i pat1 pat2
197 | Cic.Fix (_, funs1), Cic.Fix (_, funs2) ->
200 (fun (_, _, ty1, bo1) (_, _, ty2, bo2) ->
201 aux i ty1 ty2 @ aux i bo1 bo2)
203 | Cic.CoFix (_, funs1), Cic.CoFix (_, funs2) ->
206 (fun (_, ty1, bo1) (_, ty2, bo2) -> aux i ty1 ty2 @ aux i bo1 bo2)
210 (Printf.sprintf "Pattern %s versus term %s"
213 and auxs i terms1 terms2 = (* as aux for list of terms *)
214 List.concat (List.map2 (fun t1 t2 -> aux i t1 t2) terms1 terms2)
218 let pattern_of ?(equality=(==)) ~term terms =
219 let (===) x y = equality x y in
222 | t when List.exists (fun t' -> t === t') terms -> Cic.Implicit (Some `Hole)
223 | Cic.Var (uri, subst) -> Cic.Var (uri, aux_subst subst)
224 | Cic.Meta (i, ctxt) ->
226 List.map (function None -> None | Some t -> Some (aux t)) ctxt
229 | Cic.Cast (t, ty) -> Cic.Cast (aux t, aux ty)
230 | Cic.Prod (name, s, t) -> Cic.Prod (name, aux s, aux t)
231 | Cic.Lambda (name, s, t) -> Cic.Lambda (name, aux s, aux t)
232 | Cic.LetIn (name, s, t) -> Cic.LetIn (name, aux s, aux t)
233 | Cic.Appl terms -> Cic.Appl (List.map aux terms)
234 | Cic.Const (uri, subst) -> Cic.Const (uri, aux_subst subst)
235 | Cic.MutInd (uri, tyno, subst) -> Cic.MutInd (uri, tyno, aux_subst subst)
236 | Cic.MutConstruct (uri, tyno, consno, subst) ->
237 Cic.MutConstruct (uri, tyno, consno, aux_subst subst)
238 | Cic.MutCase (uri, tyno, outty, t, pat) ->
239 Cic.MutCase (uri, tyno, aux outty, aux t, List.map aux pat)
240 | Cic.Fix (funno, funs) ->
242 List.map (fun (name, i, ty, bo) -> (name, i, aux ty, aux bo)) funs
244 Cic.Fix (funno, funs)
245 | Cic.CoFix (funno, funs) ->
247 List.map (fun (name, ty, bo) -> (name, aux ty, aux bo)) funs
249 Cic.CoFix (funno, funs)
252 | Cic.Implicit _ -> t
253 and aux_subst subst =
254 List.map (fun (uri, t) -> (uri, aux t)) subst