1 (* Copyright (C) 2002, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
26 (******************************************************************************)
30 (* Claudio Sacerdoti Coen <sacerdot@cs.unibo.it> *)
34 (******************************************************************************)
37 (* The code of this module is derived from the code of CicReduction *)
39 exception Impossible of int;;
40 exception ReferenceToConstant;;
41 exception ReferenceToVariable;;
42 exception ReferenceToCurrentProof;;
43 exception ReferenceToInductiveDefinition;;
44 exception WrongUriToInductiveDefinition;;
45 exception WrongUriToConstant;;
46 exception RelToHiddenHypothesis;;
48 let alpha_equivalence =
54 C.Var (uri1,exp_named_subst1), C.Var (uri2,exp_named_subst2) ->
55 UriManager.eq uri1 uri2 &&
56 aux_exp_named_subst exp_named_subst1 exp_named_subst2
57 | C.Cast (te,ty), C.Cast (te',ty') ->
58 aux te te' && aux ty ty'
59 | C.Prod (_,s,t), C.Prod (_,s',t') ->
61 | C.Lambda (_,s,t), C.Lambda (_,s',t') ->
63 | C.LetIn (_,s,t), C.LetIn(_,s',t') ->
65 | C.Appl l, C.Appl l' ->
68 (fun b t1 t2 -> b && aux t1 t2) true l l'
70 Invalid_argument _ -> false)
71 | C.Const (uri,exp_named_subst1), C.Const (uri',exp_named_subst2) ->
72 UriManager.eq uri uri' &&
73 aux_exp_named_subst exp_named_subst1 exp_named_subst2
74 | C.MutInd (uri,i,exp_named_subst1), C.MutInd (uri',i',exp_named_subst2) ->
75 UriManager.eq uri uri' && i = i' &&
76 aux_exp_named_subst exp_named_subst1 exp_named_subst2
77 | C.MutConstruct (uri,i,j,exp_named_subst1),
78 C.MutConstruct (uri',i',j',exp_named_subst2) ->
79 UriManager.eq uri uri' && i = i' && j = j' &&
80 aux_exp_named_subst exp_named_subst1 exp_named_subst2
81 | C.MutCase (sp,i,outt,t,pl), C.MutCase (sp',i',outt',t',pl') ->
82 UriManager.eq sp sp' && i = i' &&
83 aux outt outt' && aux t t' &&
86 (fun b t1 t2 -> b && aux t1 t2) true pl pl'
88 Invalid_argument _ -> false)
89 | C.Fix (i,fl), C.Fix (i',fl') ->
93 (fun b (_,i,ty,bo) (_,i',ty',bo') ->
94 b && i = i' && aux ty ty' && aux bo bo'
97 Invalid_argument _ -> false)
98 | C.CoFix (i,fl), C.CoFix (i',fl') ->
102 (fun b (_,ty,bo) (_,ty',bo') ->
103 b && aux ty ty' && aux bo bo'
106 Invalid_argument _ -> false)
107 | _,_ -> false (* we already know that t != t' *)
108 and aux_exp_named_subst exp_named_subst1 exp_named_subst2 =
111 (fun b (uri1,t1) (uri2,t2) ->
112 b && UriManager.eq uri1 uri2 && aux t1 t2
113 ) true exp_named_subst1 exp_named_subst2
115 Invalid_argument _ -> false
120 exception WhatAndWithWhatDoNotHaveTheSameLength;;
122 (* "textual" replacement of several subterms with other ones *)
123 let replace ~equality ~what ~with_what ~where =
124 let module C = Cic in
126 let rec find_image_aux =
128 [],[] -> raise Not_found
129 | what::tl1,with_what::tl2 ->
130 if equality t what then with_what else find_image_aux (tl1,tl2)
131 | _,_ -> raise WhatAndWithWhatDoNotHaveTheSameLength
133 find_image_aux (what,with_what)
141 | C.Var (uri,exp_named_subst) ->
142 C.Var (uri,List.map (function (uri,t) -> uri, aux t) exp_named_subst)
145 | C.Implicit _ as t -> t
146 | C.Cast (te,ty) -> C.Cast (aux te, aux ty)
147 | C.Prod (n,s,t) -> C.Prod (n, aux s, aux t)
148 | C.Lambda (n,s,t) -> C.Lambda (n, aux s, aux t)
149 | C.LetIn (n,s,t) -> C.LetIn (n, aux s, aux t)
151 (* Invariant enforced: no application of an application *)
152 (match List.map aux l with
153 (C.Appl l')::tl -> C.Appl (l'@tl)
155 | C.Const (uri,exp_named_subst) ->
156 C.Const (uri,List.map (function (uri,t) -> uri, aux t) exp_named_subst)
157 | C.MutInd (uri,i,exp_named_subst) ->
159 (uri,i,List.map (function (uri,t) -> uri, aux t) exp_named_subst)
160 | C.MutConstruct (uri,i,j,exp_named_subst) ->
162 (uri,i,j,List.map (function (uri,t) -> uri, aux t) exp_named_subst)
163 | C.MutCase (sp,i,outt,t,pl) ->
164 C.MutCase (sp,i,aux outt, aux t,List.map aux pl)
168 (fun (name,i,ty,bo) -> (name, i, aux ty, aux bo))
171 C.Fix (i, substitutedfl)
175 (fun (name,ty,bo) -> (name, aux ty, aux bo))
178 C.CoFix (i, substitutedfl)
183 (* replaces in a term a term with another one. *)
184 (* Lifting are performed as usual. *)
185 let replace_lifting ~equality ~what ~with_what ~where =
186 let module C = Cic in
187 let module S = CicSubstitution in
188 let find_image what t =
189 let rec find_image_aux =
191 [],[] -> raise Not_found
192 | what::tl1,with_what::tl2 ->
193 if equality t what then with_what else find_image_aux (tl1,tl2)
194 | _,_ -> raise WhatAndWithWhatDoNotHaveTheSameLength
196 find_image_aux (what,with_what)
198 let rec substaux k what t =
200 S.lift (k-1) (find_image what t)
204 | C.Var (uri,exp_named_subst) ->
205 let exp_named_subst' =
206 List.map (function (uri,t) -> uri,substaux k what t) exp_named_subst
208 C.Var (uri,exp_named_subst')
209 | C.Meta (i, l) as t ->
214 | Some t -> Some (substaux k what t)
219 | C.Implicit _ as t -> t
220 | C.Cast (te,ty) -> C.Cast (substaux k what te, substaux k what ty)
223 (n, substaux k what s, substaux (k + 1) (List.map (S.lift 1) what) t)
224 | C.Lambda (n,s,t) ->
226 (n, substaux k what s, substaux (k + 1) (List.map (S.lift 1) what) t)
229 (n, substaux k what s, substaux (k + 1) (List.map (S.lift 1) what) t)
231 (* Invariant: no Appl applied to another Appl *)
232 let tl' = List.map (substaux k what) tl in
234 match substaux k what he with
235 C.Appl l -> C.Appl (l@tl')
236 | _ as he' -> C.Appl (he'::tl')
238 | C.Appl _ -> assert false
239 | C.Const (uri,exp_named_subst) ->
240 let exp_named_subst' =
241 List.map (function (uri,t) -> uri,substaux k what t) exp_named_subst
243 C.Const (uri,exp_named_subst')
244 | C.MutInd (uri,i,exp_named_subst) ->
245 let exp_named_subst' =
246 List.map (function (uri,t) -> uri,substaux k what t) exp_named_subst
248 C.MutInd (uri,i,exp_named_subst')
249 | C.MutConstruct (uri,i,j,exp_named_subst) ->
250 let exp_named_subst' =
251 List.map (function (uri,t) -> uri,substaux k what t) exp_named_subst
253 C.MutConstruct (uri,i,j,exp_named_subst')
254 | C.MutCase (sp,i,outt,t,pl) ->
255 C.MutCase (sp,i,substaux k what outt, substaux k what t,
256 List.map (substaux k what) pl)
258 let len = List.length fl in
261 (fun (name,i,ty,bo) ->
262 (name, i, substaux k what ty,
263 substaux (k+len) (List.map (S.lift len) what) bo)
266 C.Fix (i, substitutedfl)
268 let len = List.length fl in
272 (name, substaux k what ty,
273 substaux (k+len) (List.map (S.lift len) what) bo)
276 C.CoFix (i, substitutedfl)
278 substaux 1 what where
281 (* replaces in a term a list of terms with other ones. *)
282 (* Lifting are performed as usual. *)
283 let replace_lifting_csc nnn ~equality ~what ~with_what ~where =
284 let module C = Cic in
285 let module S = CicSubstitution in
287 let rec find_image_aux =
289 [],[] -> raise Not_found
290 | what::tl1,with_what::tl2 ->
291 if equality t what then with_what else find_image_aux (tl1,tl2)
292 | _,_ -> raise WhatAndWithWhatDoNotHaveTheSameLength
294 find_image_aux (what,with_what)
296 let rec substaux k t =
298 S.lift (k-1) (find_image t)
302 if n < k then C.Rel n else C.Rel (n + nnn)
303 | C.Var (uri,exp_named_subst) ->
304 let exp_named_subst' =
305 List.map (function (uri,t) -> uri,substaux k t) exp_named_subst
307 C.Var (uri,exp_named_subst')
308 | C.Meta (i, l) as t ->
313 | Some t -> Some (substaux k t)
318 | C.Implicit _ as t -> t
319 | C.Cast (te,ty) -> C.Cast (substaux k te, substaux k ty)
321 C.Prod (n, substaux k s, substaux (k + 1) t)
322 | C.Lambda (n,s,t) ->
323 C.Lambda (n, substaux k s, substaux (k + 1) t)
325 C.LetIn (n, substaux k s, substaux (k + 1) t)
327 (* Invariant: no Appl applied to another Appl *)
328 let tl' = List.map (substaux k) tl in
330 match substaux k he with
331 C.Appl l -> C.Appl (l@tl')
332 | _ as he' -> C.Appl (he'::tl')
334 | C.Appl _ -> assert false
335 | C.Const (uri,exp_named_subst) ->
336 let exp_named_subst' =
337 List.map (function (uri,t) -> uri,substaux k t) exp_named_subst
339 C.Const (uri,exp_named_subst')
340 | C.MutInd (uri,i,exp_named_subst) ->
341 let exp_named_subst' =
342 List.map (function (uri,t) -> uri,substaux k t) exp_named_subst
344 C.MutInd (uri,i,exp_named_subst')
345 | C.MutConstruct (uri,i,j,exp_named_subst) ->
346 let exp_named_subst' =
347 List.map (function (uri,t) -> uri,substaux k t) exp_named_subst
349 C.MutConstruct (uri,i,j,exp_named_subst')
350 | C.MutCase (sp,i,outt,t,pl) ->
351 C.MutCase (sp,i,substaux k outt, substaux k t,
352 List.map (substaux k) pl)
354 let len = List.length fl in
357 (fun (name,i,ty,bo) ->
358 (name, i, substaux k ty, substaux (k+len) bo))
361 C.Fix (i, substitutedfl)
363 let len = List.length fl in
367 (name, substaux k ty, substaux (k+len) bo))
370 C.CoFix (i, substitutedfl)
375 (* Takes a well-typed term and fully reduces it. *)
376 (*CSC: It does not perform reduction in a Case *)
378 let rec reduceaux context l =
379 let module C = Cic in
380 let module S = CicSubstitution in
383 (match List.nth context (n-1) with
384 Some (_,C.Decl _) -> if l = [] then t else C.Appl (t::l)
385 | Some (_,C.Def (bo,_)) -> reduceaux context l (S.lift n bo)
386 | None -> raise RelToHiddenHypothesis
388 | C.Var (uri,exp_named_subst) ->
389 let exp_named_subst' =
390 reduceaux_exp_named_subst context l exp_named_subst
392 (match CicEnvironment.get_obj uri with
393 C.Constant _ -> raise ReferenceToConstant
394 | C.CurrentProof _ -> raise ReferenceToCurrentProof
395 | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
396 | C.Variable (_,None,_,_) ->
397 let t' = C.Var (uri,exp_named_subst') in
398 if l = [] then t' else C.Appl (t'::l)
399 | C.Variable (_,Some body,_,_) ->
401 (CicSubstitution.subst_vars exp_named_subst' body))
403 | C.Meta _ as t -> if l = [] then t else C.Appl (t::l)
404 | C.Sort _ as t -> t (* l should be empty *)
405 | C.Implicit _ as t -> t
407 C.Cast (reduceaux context l te, reduceaux context l ty)
408 | C.Prod (name,s,t) ->
411 reduceaux context [] s,
412 reduceaux ((Some (name,C.Decl s))::context) [] t)
413 | C.Lambda (name,s,t) ->
417 reduceaux context [] s,
418 reduceaux ((Some (name,C.Decl s))::context) [] t)
419 | he::tl -> reduceaux context tl (S.subst he t)
420 (* when name is Anonimous the substitution should be superfluous *)
423 reduceaux context l (S.subst (reduceaux context [] s) t)
425 let tl' = List.map (reduceaux context []) tl in
426 reduceaux context (tl'@l) he
427 | C.Appl [] -> raise (Impossible 1)
428 | C.Const (uri,exp_named_subst) ->
429 let exp_named_subst' =
430 reduceaux_exp_named_subst context l exp_named_subst
432 (match CicEnvironment.get_obj uri with
433 C.Constant (_,Some body,_,_) ->
435 (CicSubstitution.subst_vars exp_named_subst' body))
436 | C.Constant (_,None,_,_) ->
437 let t' = C.Const (uri,exp_named_subst') in
438 if l = [] then t' else C.Appl (t'::l)
439 | C.Variable _ -> raise ReferenceToVariable
440 | C.CurrentProof (_,_,body,_,_) ->
442 (CicSubstitution.subst_vars exp_named_subst' body))
443 | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
445 | C.MutInd (uri,i,exp_named_subst) ->
446 let exp_named_subst' =
447 reduceaux_exp_named_subst context l exp_named_subst
449 let t' = C.MutInd (uri,i,exp_named_subst') in
450 if l = [] then t' else C.Appl (t'::l)
451 | C.MutConstruct (uri,i,j,exp_named_subst) as t ->
452 let exp_named_subst' =
453 reduceaux_exp_named_subst context l exp_named_subst
455 let t' = C.MutConstruct (uri,i,j,exp_named_subst') in
456 if l = [] then t' else C.Appl (t'::l)
457 | C.MutCase (mutind,i,outtype,term,pl) ->
460 C.CoFix (i,fl) as t ->
462 List.map (function (name,ty,_) -> Some (C.Name name, C.Decl ty)) fl
464 let (_,_,body) = List.nth fl i in
466 let counter = ref (List.length fl) in
468 (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl)))
472 reduceaux context [] body'
473 | C.Appl (C.CoFix (i,fl) :: tl) ->
475 List.map (function (name,ty,_) -> Some (C.Name name, C.Decl ty)) fl
477 let (_,_,body) = List.nth fl i in
479 let counter = ref (List.length fl) in
481 (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl)))
485 let tl' = List.map (reduceaux context []) tl in
486 reduceaux context tl' body'
489 (match decofix (reduceaux context [] term) with
490 C.MutConstruct (_,_,j,_) -> reduceaux context l (List.nth pl (j-1))
491 | C.Appl (C.MutConstruct (_,_,j,_) :: tl) ->
493 match CicEnvironment.get_obj mutind with
494 C.InductiveDefinition (tl,_,r) ->
495 let (_,_,arity,_) = List.nth tl i in
497 | _ -> raise WrongUriToInductiveDefinition
503 | (n,he::tl) when n > 0 -> eat_first (n - 1, tl)
504 | _ -> raise (Impossible 5)
508 reduceaux context (ts@l) (List.nth pl (j-1))
509 | C.Cast _ | C.Implicit _ ->
510 raise (Impossible 2) (* we don't trust our whd ;-) *)
512 let outtype' = reduceaux context [] outtype in
513 let term' = reduceaux context [] term in
514 let pl' = List.map (reduceaux context []) pl in
516 C.MutCase (mutind,i,outtype',term',pl')
518 if l = [] then res else C.Appl (res::l)
522 List.map (function (name,_,ty,_) -> Some (C.Name name, C.Decl ty)) fl
527 (function (n,recindex,ty,bo) ->
528 (n,recindex,reduceaux context [] ty, reduceaux (tys@context) [] bo)
533 let (_,recindex,_,body) = List.nth fl i in
536 Some (List.nth l recindex)
542 (match reduceaux context [] recparam with
544 | C.Appl ((C.MutConstruct _)::_) ->
546 let counter = ref (List.length fl) in
548 (fun _ -> decr counter ; S.subst (C.Fix (!counter,fl)))
552 (* Possible optimization: substituting whd recparam in l*)
553 reduceaux context l body'
554 | _ -> if l = [] then t' () else C.Appl ((t' ())::l)
556 | None -> if l = [] then t' () else C.Appl ((t' ())::l)
560 List.map (function (name,ty,_) -> Some (C.Name name, C.Decl ty)) fl
565 (function (n,ty,bo) ->
566 (n,reduceaux context [] ty, reduceaux (tys@context) [] bo)
571 if l = [] then t' else C.Appl (t'::l)
572 and reduceaux_exp_named_subst context l =
573 List.map (function uri,t -> uri,reduceaux context [] t)
578 exception WrongShape;;
579 exception AlreadySimplified;;
581 (* Takes a well-typed term and *)
582 (* 1) Performs beta-iota-zeta reduction until delta reduction is needed *)
583 (* 2) Attempts delta-reduction. If the residual is a Fix lambda-abstracted *)
584 (* w.r.t. zero or more variables and if the Fix can be reduced, than it *)
585 (* is reduced, the delta-reduction is succesfull and the whole algorithm *)
586 (* is applied again to the new redex; Step 3) is applied to the result *)
587 (* of the recursive simplification. Otherwise, if the Fix can not be *)
588 (* reduced, than the delta-reductions fails and the delta-redex is *)
589 (* not reduced. Otherwise, if the delta-residual is not the *)
590 (* lambda-abstraction of a Fix, then it is reduced and the result is *)
591 (* directly returned, without performing step 3). *)
592 (* 3) Folds the application of the constant to the arguments that did not *)
593 (* change in every iteration, i.e. to the actual arguments for the *)
594 (* lambda-abstractions that precede the Fix. *)
595 (*CSC: It does not perform simplification in a Case *)
597 (* reduceaux is equal to the reduceaux locally defined inside *)
598 (* reduce, but for the const case. *)
600 let rec reduceaux context l =
601 let module C = Cic in
602 let module S = CicSubstitution in
605 (match List.nth context (n-1) with
606 Some (_,C.Decl _) -> if l = [] then t else C.Appl (t::l)
607 | Some (_,C.Def (bo,_)) ->
608 try_delta_expansion l t (S.lift n bo)
609 | None -> raise RelToHiddenHypothesis
611 | C.Var (uri,exp_named_subst) ->
612 let exp_named_subst' =
613 reduceaux_exp_named_subst context l exp_named_subst
615 (match CicEnvironment.get_obj uri with
616 C.Constant _ -> raise ReferenceToConstant
617 | C.CurrentProof _ -> raise ReferenceToCurrentProof
618 | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
619 | C.Variable (_,None,_,_) ->
620 let t' = C.Var (uri,exp_named_subst') in
621 if l = [] then t' else C.Appl (t'::l)
622 | C.Variable (_,Some body,_,_) ->
624 (CicSubstitution.subst_vars exp_named_subst' body)
626 | C.Meta _ as t -> if l = [] then t else C.Appl (t::l)
627 | C.Sort _ as t -> t (* l should be empty *)
628 | C.Implicit _ as t -> t
630 C.Cast (reduceaux context l te, reduceaux context l ty)
631 | C.Prod (name,s,t) ->
634 reduceaux context [] s,
635 reduceaux ((Some (name,C.Decl s))::context) [] t)
636 | C.Lambda (name,s,t) ->
640 reduceaux context [] s,
641 reduceaux ((Some (name,C.Decl s))::context) [] t)
642 | he::tl -> reduceaux context tl (S.subst he t)
643 (* when name is Anonimous the substitution should be superfluous *)
646 reduceaux context l (S.subst (reduceaux context [] s) t)
648 let tl' = List.map (reduceaux context []) tl in
649 reduceaux context (tl'@l) he
650 | C.Appl [] -> raise (Impossible 1)
651 | C.Const (uri,exp_named_subst) ->
652 let exp_named_subst' =
653 reduceaux_exp_named_subst context l exp_named_subst
655 (match CicEnvironment.get_obj uri with
656 C.Constant (_,Some body,_,_) ->
657 try_delta_expansion l
658 (C.Const (uri,exp_named_subst'))
659 (CicSubstitution.subst_vars exp_named_subst' body)
660 | C.Constant (_,None,_,_) ->
661 let t' = C.Const (uri,exp_named_subst') in
662 if l = [] then t' else C.Appl (t'::l)
663 | C.Variable _ -> raise ReferenceToVariable
664 | C.CurrentProof (_,_,body,_,_) -> reduceaux context l body
665 | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
667 | C.MutInd (uri,i,exp_named_subst) ->
668 let exp_named_subst' =
669 reduceaux_exp_named_subst context l exp_named_subst
671 let t' = C.MutInd (uri,i,exp_named_subst') in
672 if l = [] then t' else C.Appl (t'::l)
673 | C.MutConstruct (uri,i,j,exp_named_subst) ->
674 let exp_named_subst' =
675 reduceaux_exp_named_subst context l exp_named_subst
677 let t' = C.MutConstruct(uri,i,j,exp_named_subst') in
678 if l = [] then t' else C.Appl (t'::l)
679 | C.MutCase (mutind,i,outtype,term,pl) ->
682 C.CoFix (i,fl) as t ->
684 List.map (function (name,ty,_) -> Some (C.Name name, C.Decl ty)) fl in
685 let (_,_,body) = List.nth fl i in
687 let counter = ref (List.length fl) in
689 (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl)))
693 reduceaux context [] body'
694 | C.Appl (C.CoFix (i,fl) :: tl) ->
696 List.map (function (name,ty,_) -> Some (C.Name name, C.Decl ty)) fl in
697 let (_,_,body) = List.nth fl i in
699 let counter = ref (List.length fl) in
701 (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl)))
705 let tl' = List.map (reduceaux context []) tl in
706 reduceaux context tl body'
709 (match decofix (reduceaux context [] term) with
710 C.MutConstruct (_,_,j,_) -> reduceaux context l (List.nth pl (j-1))
711 | C.Appl (C.MutConstruct (_,_,j,_) :: tl) ->
713 match CicEnvironment.get_obj mutind with
714 C.InductiveDefinition (tl,ingredients,r) ->
715 let (_,_,arity,_) = List.nth tl i in
717 | _ -> raise WrongUriToInductiveDefinition
723 | (n,he::tl) when n > 0 -> eat_first (n - 1, tl)
724 | _ -> raise (Impossible 5)
728 reduceaux context (ts@l) (List.nth pl (j-1))
729 | C.Cast _ | C.Implicit _ ->
730 raise (Impossible 2) (* we don't trust our whd ;-) *)
732 let outtype' = reduceaux context [] outtype in
733 let term' = reduceaux context [] term in
734 let pl' = List.map (reduceaux context []) pl in
736 C.MutCase (mutind,i,outtype',term',pl')
738 if l = [] then res else C.Appl (res::l)
742 List.map (function (name,_,ty,_) -> Some (C.Name name, C.Decl ty)) fl
747 (function (n,recindex,ty,bo) ->
748 (n,recindex,reduceaux context [] ty, reduceaux (tys@context) [] bo)
753 let (_,recindex,_,body) = List.nth fl i in
756 Some (List.nth l recindex)
762 (match reduceaux context [] recparam with
764 | C.Appl ((C.MutConstruct _)::_) ->
766 let counter = ref (List.length fl) in
768 (fun _ -> decr counter ; S.subst (C.Fix (!counter,fl)))
772 (* Possible optimization: substituting whd recparam in l*)
773 reduceaux context l body'
774 | _ -> if l = [] then t' () else C.Appl ((t' ())::l)
776 | None -> if l = [] then t' () else C.Appl ((t' ())::l)
780 List.map (function (name,ty,_) -> Some (C.Name name, C.Decl ty)) fl
785 (function (n,ty,bo) ->
786 (n,reduceaux context [] ty, reduceaux (tys@context) [] bo)
791 if l = [] then t' else C.Appl (t'::l)
792 and reduceaux_exp_named_subst context l =
793 List.map (function uri,t -> uri,reduceaux context [] t)
795 and try_delta_expansion l term body =
796 let module C = Cic in
797 let module S = CicSubstitution in
799 let res,constant_args =
800 let rec aux rev_constant_args l =
802 C.Lambda (name,s,t) as t' ->
805 [] -> raise WrongShape
807 (* when name is Anonimous the substitution should *)
809 aux (he::rev_constant_args) tl (S.subst he t)
812 aux rev_constant_args l (S.subst s t)
813 | C.Fix (i,fl) as t ->
815 List.map (function (name,_,ty,_) ->
816 Some (C.Name name, C.Decl ty)) fl
818 let (_,recindex,_,body) = List.nth fl i in
823 _ -> raise AlreadySimplified
825 (match CicReduction.whd context recparam with
827 | C.Appl ((C.MutConstruct _)::_) ->
829 let counter = ref (List.length fl) in
832 decr counter ; S.subst (C.Fix (!counter,fl))
835 (* Possible optimization: substituting whd *)
837 reduceaux context l body',
838 List.rev rev_constant_args
839 | _ -> raise AlreadySimplified
841 | _ -> raise WrongShape
846 let term_to_fold, delta_expanded_term_to_fold =
847 match constant_args with
849 | _ -> C.Appl (term::constant_args), C.Appl (body::constant_args)
851 let simplified_term_to_fold =
852 reduceaux context [] delta_expanded_term_to_fold
854 replace (=) [simplified_term_to_fold] [term_to_fold] res
857 (* The constant does not unfold to a Fix lambda-abstracted *)
858 (* w.r.t. zero or more variables. We just perform reduction.*)
859 reduceaux context l body
860 | AlreadySimplified ->
861 (* If we performed delta-reduction, we would find a Fix *)
862 (* not applied to a constructor. So, we refuse to perform *)
863 (* delta-reduction. *)
864 if l = [] then term else C.Appl (term::l)