1 (* Copyright (C) 2004, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
26 let absurd = NegationTactics.absurd_tac
27 let apply = PrimitiveTactics.apply_tac
28 let assumption = VariousTactics.assumption_tac
29 let auto = AutoTactic.auto_tac
30 let auto_new = AutoTactic.auto_tac_new
31 let change = PrimitiveTactics.change_tac
32 let compare = DiscriminationTactics.compare_tac
33 let constructor = IntroductionTactics.constructor_tac
34 let contradiction = NegationTactics.contradiction_tac
35 let cut = PrimitiveTactics.cut_tac
36 let decide_equality = DiscriminationTactics.decide_equality_tac
37 let decompose = EliminationTactics.decompose_tac
38 let discriminate = DiscriminationTactics.discriminate_tac
39 let elim_intros_simpl = PrimitiveTactics.elim_intros_simpl_tac
40 let elim_type = EliminationTactics.elim_type_tac
41 let exact = PrimitiveTactics.exact_tac
42 let exists = IntroductionTactics.exists_tac
43 let fold = ReductionTactics.fold_tac
44 let fourier = FourierR.fourier_tac
45 let generalize = VariousTactics.generalize_tac
46 let injection = DiscriminationTactics.injection_tac
47 let intros = PrimitiveTactics.intros_tac
48 let left = IntroductionTactics.left_tac
49 let letin = PrimitiveTactics.letin_tac
50 let reduce = ReductionTactics.reduce_tac
51 let reflexivity = EqualityTactics.reflexivity_tac
52 let replace = EqualityTactics.replace_tac
53 let rewrite_back = EqualityTactics.rewrite_back_tac
54 let rewrite_back_simpl = EqualityTactics.rewrite_back_simpl_tac
55 let rewrite = EqualityTactics.rewrite_tac
56 let rewrite_simpl = EqualityTactics.rewrite_simpl_tac
57 let right = IntroductionTactics.right_tac
58 let ring = Ring.ring_tac
59 let simpl = ReductionTactics.simpl_tac
60 let split = IntroductionTactics.split_tac
61 let symmetry = EqualityTactics.symmetry_tac
62 let transitivity = EqualityTactics.transitivity_tac
63 let whd = ReductionTactics.whd_tac