1 (* Copyright (C) 2005, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://helm.cs.unibo.it/
30 module Ast = CicNotationPt
33 let debug_print s = if debug then prerr_endline (Lazy.force s) else ()
35 type interpretation_id = int
37 let idref id t = Ast.AttributedTerm (`IdRef id, t)
40 { sort: (Cic.id, Ast.sort_kind) Hashtbl.t;
41 uri: (Cic.id, UriManager.uri) Hashtbl.t;
45 let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in
47 | Cic.InductiveDefinition (l,_,lpsno,_) -> l, lpsno
50 let name_of_inductive_type uri i =
51 let types, _ = get_types uri in
52 let (name, _, _, _) = try List.nth types i with Not_found -> assert false in
55 (* returns <name, type> pairs *)
56 let constructors_of_inductive_type uri i =
57 let types, _ = get_types uri in
58 let (_, _, _, constructors) =
59 try List.nth types i with Not_found -> assert false
63 (* returns name only *)
64 let constructor_of_inductive_type uri i j =
66 fst (List.nth (constructors_of_inductive_type uri i) (j-1))
67 with Not_found -> assert false)
69 (* returns the number of left parameters *)
70 let left_params_no_of_inductive_type uri =
73 let ast_of_acic0 term_info acic k =
74 let k = k term_info in
75 let id_to_uris = term_info.uri in
76 let register_uri id uri = Hashtbl.add id_to_uris id uri in
79 Hashtbl.find term_info.sort id
81 prerr_endline (sprintf "warning: sort of id %s not found, using Type" id);
82 `Type (CicUniv.fresh ())
84 let aux_substs substs =
87 (fun (uri, annterm) -> (UriManager.name_of_uri uri, k annterm))
90 let aux_context context =
94 | Some annterm -> Some (k annterm))
98 | Cic.ARel (id,_,_,b) -> idref id (Ast.Ident (b, None))
99 | Cic.AVar (id,uri,substs) ->
101 idref id (Ast.Ident (UriManager.name_of_uri uri, aux_substs substs))
102 | Cic.AMeta (id,n,l) -> idref id (Ast.Meta (n, aux_context l))
103 | Cic.ASort (id,Cic.Prop) -> idref id (Ast.Sort `Prop)
104 | Cic.ASort (id,Cic.Set) -> idref id (Ast.Sort `Set)
105 | Cic.ASort (id,Cic.Type u) -> idref id (Ast.Sort (`Type u))
106 | Cic.ASort (id,Cic.CProp) -> idref id (Ast.Sort `CProp)
107 | Cic.AImplicit (id, Some `Hole) -> idref id Ast.UserInput
108 | Cic.AImplicit (id, _) -> idref id Ast.Implicit
109 | Cic.AProd (id,n,s,t) ->
111 match sort_of_id id with
112 | `Set | `Type _ -> `Pi
113 | `Prop | `CProp -> `Forall
115 idref id (Ast.Binder (binder_kind,
116 (CicNotationUtil.name_of_cic_name n, Some (k s)), k t))
117 | Cic.ACast (id,v,t) -> idref id (Ast.Cast (k v, k t))
118 | Cic.ALambda (id,n,s,t) ->
119 idref id (Ast.Binder (`Lambda,
120 (CicNotationUtil.name_of_cic_name n, Some (k s)), k t))
121 | Cic.ALetIn (id,n,s,t) ->
122 idref id (Ast.LetIn ((CicNotationUtil.name_of_cic_name n, None),
124 | Cic.AAppl (aid,(Cic.AConst _ as he::tl as args))
125 | Cic.AAppl (aid,(Cic.AMutInd _ as he::tl as args))
126 | Cic.AAppl (aid,(Cic.AMutConstruct _ as he::tl as args)) ->
133 let (res,len) as res' = aux tl in
139 match fst (aux l) with
142 | Ast.AttributedTerm (_,(Ast.Appl l))::tl ->
143 idref aid (Ast.Appl (l@tl))
144 | l -> idref aid (Ast.Appl l)
146 let deannot_he = Deannotate.deannotate_term he in
147 if CoercDb.is_a_coercion' deannot_he && !Acic2content.hide_coercions
149 match CoercDb.is_a_coercion_to_funclass deannot_he with
150 | None -> idref aid (last_n 1 (List.map k tl))
151 | Some i -> idref aid (last_n (i+1) (List.map k tl))
153 idref aid (Ast.Appl (List.map k args))
154 | Cic.AAppl (aid,args) ->
155 idref aid (Ast.Appl (List.map k args))
156 | Cic.AConst (id,uri,substs) ->
158 idref id (Ast.Ident (UriManager.name_of_uri uri, aux_substs substs))
159 | Cic.AMutInd (id,uri,i,substs) ->
160 let name = name_of_inductive_type uri i in
161 let uri_str = UriManager.string_of_uri uri in
162 let puri_str = sprintf "%s#xpointer(1/%d)" uri_str (i+1) in
163 register_uri id (UriManager.uri_of_string puri_str);
164 idref id (Ast.Ident (name, aux_substs substs))
165 | Cic.AMutConstruct (id,uri,i,j,substs) ->
166 let name = constructor_of_inductive_type uri i j in
167 let uri_str = UriManager.string_of_uri uri in
168 let puri_str = sprintf "%s#xpointer(1/%d/%d)" uri_str (i + 1) j in
169 register_uri id (UriManager.uri_of_string puri_str);
170 idref id (Ast.Ident (name, aux_substs substs))
171 | Cic.AMutCase (id,uri,typeno,ty,te,patterns) ->
172 let name = name_of_inductive_type uri typeno in
173 let uri_str = UriManager.string_of_uri uri in
174 let puri_str = sprintf "%s#xpointer(1/%d)" uri_str (typeno+1) in
176 UriManager.uri_of_string
177 (sprintf "%s#xpointer(1/%d/%d)" uri_str (typeno+1) j)
179 let case_indty = name, Some (UriManager.uri_of_string puri_str) in
180 let constructors = constructors_of_inductive_type uri typeno in
181 let lpsno = left_params_no_of_inductive_type uri in
182 let rec eat_branch n ty pat =
184 | Cic.Prod (_, _, t), _ when n > 0 -> eat_branch (pred n) t pat
185 | Cic.Prod (_, _, t), Cic.ALambda (_, name, s, t') ->
186 let (cv, rhs) = eat_branch 0 t t' in
187 (CicNotationUtil.name_of_cic_name name, Some (k s)) :: cv, rhs
194 (fun (name, ty) pat ->
196 let (capture_variables, rhs) = eat_branch lpsno ty pat in
197 ((name, Some (ctor_puri !j), capture_variables), rhs))
198 constructors patterns
199 with Invalid_argument _ -> assert false
201 idref id (Ast.Case (k te, Some case_indty, Some (k ty), patterns))
202 | Cic.AFix (id, no, funs) ->
205 (fun (_, n, decr_idx, ty, bo) ->
209 Cic.ALambda (_,name,so,ta) ->
210 let params,rest = aux ta in
211 (CicNotationUtil.name_of_cic_name name,Some (k so))::
221 | n,Cic.AProd (_,_,_,ta) -> eat_pis (n - 1,ta)
223 (* I should do a whd here, but I have no context *)
226 eat_pis ((List.length params),ty)
228 (params,(Ast.Ident (n, None), Some (k ty)), k bo, decr_idx))
233 (match List.nth defs no with
234 | _, (Ast.Ident (n, _), _), _, _ when n <> "_" -> n
236 with Not_found -> assert false
238 idref id (Ast.LetRec (`Inductive, defs, Ast.Ident (name, None)))
239 | Cic.ACoFix (id, no, funs) ->
242 (fun (_, n, ty, bo) ->
246 Cic.ALambda (_,name,so,ta) ->
247 let params,rest = aux ta in
248 (CicNotationUtil.name_of_cic_name name,Some (k so))::
258 | n,Cic.AProd (_,_,_,ta) -> eat_pis (n - 1,ta)
260 (* I should do a whd here, but I have no context *)
263 eat_pis ((List.length params),ty)
265 (params,(Ast.Ident (n, None), Some (k ty)), k bo, 0))
270 (match List.nth defs no with
271 | _, (Ast.Ident (n, _), _), _, _ when n <> "_" -> n
273 with Not_found -> assert false
275 idref id (Ast.LetRec (`CoInductive, defs, Ast.Ident (name, None)))
279 (* persistent state *)
281 let level2_patterns32 = Hashtbl.create 211
282 let interpretations = Hashtbl.create 211 (* symb -> id list ref *)
284 let compiled32 = ref None
285 let pattern32_matrix = ref []
287 let get_compiled32 () =
288 match !compiled32 with
289 | None -> assert false
290 | Some f -> Lazy.force f
292 let set_compiled32 f = compiled32 := Some f
295 List.fold_right (fun idref t -> Ast.AttributedTerm (`IdRef idref, t))
297 let instantiate32 term_info idrefs env symbol args =
298 let rec instantiate_arg = function
299 | Ast.IdentArg (n, name) ->
300 let t = (try List.assoc name env with Not_found -> assert false) in
301 let rec count_lambda = function
302 | Ast.AttributedTerm (_, t) -> count_lambda t
303 | Ast.Binder (`Lambda, _, body) -> 1 + count_lambda body
306 let rec add_lambda t n =
308 let name = CicNotationUtil.fresh_name () in
309 Ast.Binder (`Lambda, (Ast.Ident (name, None), None),
310 Ast.Appl [add_lambda t (n - 1); Ast.Ident (name, None)])
314 add_lambda t (n - count_lambda t)
317 let symbol = Ast.Symbol (symbol, 0) in
318 add_idrefs idrefs symbol
320 if args = [] then head
321 else Ast.Appl (head :: List.map instantiate_arg args)
323 let rec ast_of_acic1 term_info annterm =
324 let id_to_uris = term_info.uri in
325 let register_uri id uri = Hashtbl.add id_to_uris id uri in
326 match (get_compiled32 ()) annterm with
327 | None -> ast_of_acic0 term_info annterm ast_of_acic1
328 | Some (env, ctors, pid) ->
332 let idref = CicUtil.id_of_annterm annterm in
335 (CicUtil.uri_of_term (Deannotate.deannotate_term annterm))
336 with Invalid_argument _ -> ());
341 List.map (fun (name, term) -> (name, ast_of_acic1 term_info term)) env
343 let _, symbol, args, _ =
345 Hashtbl.find level2_patterns32 pid
346 with Not_found -> assert false
348 let ast = instantiate32 term_info idrefs env' symbol args in
349 Ast.AttributedTerm (`IdRef (CicUtil.id_of_annterm annterm), ast)
351 let load_patterns32 t =
353 HExtlib.filter_map (function (true, ap, id) -> Some (ap, id) | _ -> None) t
355 set_compiled32 (lazy (Acic2astMatcher.Matcher32.compiler t))
357 let ast_of_acic id_to_sort annterm =
358 debug_print (lazy ("ast_of_acic <- "
359 ^ CicPp.ppterm (Deannotate.deannotate_term annterm)));
360 let term_info = { sort = id_to_sort; uri = Hashtbl.create 211 } in
361 let ast = ast_of_acic1 term_info annterm in
362 debug_print (lazy ("ast_of_acic -> " ^ CicNotationPp.pp_term ast));
366 let counter = ref ~-1 in
371 let add_interpretation dsc (symbol, args) appl_pattern =
372 let id = fresh_id () in
373 Hashtbl.add level2_patterns32 id (dsc, symbol, args, appl_pattern);
374 pattern32_matrix := (true, appl_pattern, id) :: !pattern32_matrix;
375 load_patterns32 !pattern32_matrix;
377 let ids = Hashtbl.find interpretations symbol in
379 with Not_found -> Hashtbl.add interpretations symbol (ref [id]));
382 let get_all_interpretations () =
384 (function (_, _, id) ->
387 Hashtbl.find level2_patterns32 id
388 with Not_found -> assert false
393 let get_active_interpretations () =
394 HExtlib.filter_map (function (true, _, id) -> Some id | _ -> None)
397 let set_active_interpretations ids =
398 let pattern32_matrix' =
401 | (_, ap, id) when List.mem id ids -> (true, ap, id)
402 | (_, ap, id) -> (false, ap, id))
405 pattern32_matrix := pattern32_matrix';
406 load_patterns32 !pattern32_matrix
408 exception Interpretation_not_found
410 let lookup_interpretations symbol =
413 (List.sort Pervasives.compare
416 let (dsc, _, args, appl_pattern) =
418 Hashtbl.find level2_patterns32 id
419 with Not_found -> assert false
421 dsc, args, appl_pattern)
422 !(Hashtbl.find interpretations symbol)))
423 with Not_found -> raise Interpretation_not_found
425 let remove_interpretation id =
427 let _, symbol, _, _ = Hashtbl.find level2_patterns32 id in
428 let ids = Hashtbl.find interpretations symbol in
429 ids := List.filter ((<>) id) !ids;
430 Hashtbl.remove level2_patterns32 id;
431 with Not_found -> raise Interpretation_not_found);
433 List.filter (fun (_, _, id') -> id <> id') !pattern32_matrix;
434 load_patterns32 !pattern32_matrix
436 let _ = load_patterns32 []
438 let instantiate_appl_pattern env appl_pattern =
440 try List.assoc name env
442 prerr_endline (sprintf "Name %s not found" name);
445 let rec aux = function
446 | Ast.UriPattern uri -> CicUtil.term_of_uri uri
447 | Ast.ImplicitPattern -> Cic.Implicit None
448 | Ast.VarPattern name -> lookup name
449 | Ast.ApplPattern terms -> Cic.Appl (List.map aux terms)