1 (* Copyright (C) 2003-2005, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
28 module S = CicSubstitution
29 module TC = CicTypeChecker
31 module UM = UriManager
32 module Obj = LibraryObjects
33 module HObj = HelmLibraryObjects
36 module E = CicEnvironment
38 module PEH = ProofEngineHelpers
40 module DTI = DoubleTypeInference
41 module NU = CicNotationUtil
44 module Cl = ProceduralClassify
45 module T = ProceduralTypes
46 module Cn = ProceduralConversion
47 module H = ProceduralHelpers
48 module X = ProceduralTeX
51 sorts : (C.id, A.sort_kind) Hashtbl.t;
52 types : (C.id, A.anntypes) Hashtbl.t;
53 max_depth: int option;
59 let tex_formatter = ref None
63 (* helpers ******************************************************************)
65 let split2_last l1 l2 =
67 let n = pred (List.length l1) in
68 let before1, after1 = HEL.split_nth n l1 in
69 let before2, after2 = HEL.split_nth n l2 in
70 before1, before2, List.hd after1, List.hd after2
71 with Invalid_argument _ -> failwith "A2P.split2_last"
73 let string_of_head = function
75 | C.AConst _ -> "const"
76 | C.AMutInd _ -> "mutind"
77 | C.AMutConstruct _ -> "mutconstruct"
81 | C.ALambda _ -> "lambda"
82 | C.ALetIn _ -> "letin"
84 | C.ACoFix _ -> "cofix"
87 | C.AMutCase _ -> "mutcase"
89 | C.AImplicit _ -> "implict"
91 let next st = {st with depth = succ st.depth}
93 let add st entry = {st with context = entry :: st.context}
95 let push st = {st with case = 1 :: st.case}
98 {st with case = match st.case with
100 | hd :: tl -> succ hd :: tl
104 let case = String.concat "." (List.rev_map string_of_int st.case) in
105 Printf.sprintf "case %s: %s" case str
109 let msg = Printf.sprintf "Depth %u: " st.depth in
110 match st.max_depth with
112 | Some d -> if st.depth < d then true, msg else false, "DEPTH EXCEDED: "
113 with Invalid_argument _ -> failwith "A2P.test_depth"
115 let is_rewrite_right = function
116 | C.AConst (_, uri, []) ->
117 UM.eq uri HObj.Logic.eq_ind_r_URI || Obj.is_eq_ind_r_URI uri
120 let is_rewrite_left = function
121 | C.AConst (_, uri, []) ->
122 UM.eq uri HObj.Logic.eq_ind_URI || Obj.is_eq_ind_URI uri
125 let is_fwd_rewrite_right hd tl =
126 if is_rewrite_right hd then match List.nth tl 3 with
131 let is_fwd_rewrite_left hd tl =
132 if is_rewrite_left hd then match List.nth tl 3 with
137 let get_inner_types st v =
139 let id = Ut.id_of_annterm v in
140 try match Hashtbl.find st.types id with
141 | {A.annsynthesized = st; A.annexpected = Some et} -> Some (st, et)
142 | {A.annsynthesized = st; A.annexpected = None} -> Some (st, st)
143 with Not_found -> None
144 with Invalid_argument _ -> failwith "A2P.get_inner_types"
146 let get_inner_sort st v =
148 let id = Ut.id_of_annterm v in
149 try Hashtbl.find st.sorts id
150 with Not_found -> `Type (CicUniv.fresh())
151 with Invalid_argument _ -> failwith "A2P.get_sort"
153 let get_entry st id =
154 let rec aux = function
156 | Some (C.Name name, e) :: _ when name = id -> e
161 let string_of_atomic = function
162 | C.ARel (_, _, _, s) -> s
163 | C.AVar (_, uri, _) -> H.name_of_uri uri None None
164 | C.AConst (_, uri, _) -> H.name_of_uri uri None None
165 | C.AMutInd (_, uri, i, _) -> H.name_of_uri uri (Some i) None
166 | C.AMutConstruct (_, uri, i, j, _) -> H.name_of_uri uri (Some i) (Some j)
169 let get_sub_names head l =
170 let s = string_of_atomic head in
171 if s = "" then [] else
172 let map (names, i) _ =
173 let name = Printf.sprintf "%s_%u" s i in name :: names, succ i
175 let names, _ = List.fold_left map ([], 1) l in
178 let get_type msg st t = H.get_type msg st.context (H.cic t)
181 let rec aux k n = function
182 | C.ALambda (id, s, v, t) when k > 0 ->
183 C.ALambda (id, s, v, aux (pred k) n t)
184 | C.ALambda (_, _, _, t) when n > 0 ->
185 aux 0 (pred n) (Cn.lift 1 (-1) t)
187 Printf.eprintf "A2P.clear_absts: %u %s\n" n (Pp.ppterm (H.cic t));
193 (* proof construction *******************************************************)
195 let anonymous_premise = C.Name "UNNAMED"
197 let mk_exp_args hd tl classes synth =
198 let meta id = C.AImplicit (id, None) in
200 if I.overlaps synth cl && b then v else meta ""
202 let rec aux = function
204 | hd :: tl -> if hd = meta "" then aux tl else List.rev (hd :: tl)
206 let args = T.list_rev_map2 map tl classes in
207 let args = aux args in
208 if args = [] then hd else C.AAppl ("", hd :: args)
210 let mk_convert st ?name sty ety note =
211 let e = Cn.hole "" in
212 let csty, cety = H.cic sty, H.cic ety in
215 let sname = match name with None -> "" | Some (id, _) -> id in
216 let note = Printf.sprintf "%s: %s\nSINTH: %s\nEXP: %s"
217 note sname (Pp.ppterm csty) (Pp.ppterm cety)
222 assert (Ut.is_sober st.context csty);
223 assert (Ut.is_sober st.context cety);
224 if Ut.alpha_equivalence csty cety then script else
225 let sty, ety = H.acic_bc st.context sty, H.acic_bc st.context ety in
227 | None -> T.Change (sty, ety, None, e, "") :: script
229 begin match get_entry st id with
230 | C.Def _ -> assert false (* T.ClearBody (id, "") :: script *)
232 T.Change (ety, sty, Some (id, Some id), e, "") :: script
235 let convert st ?name v =
236 match get_inner_types st v with
238 if !debug then [T.Note "NORMAL: NO INNER TYPES"] else []
239 | Some (sty, ety) -> mk_convert st ?name sty ety "NORMAL"
241 let get_intro = function
242 | C.Anonymous -> None
245 let mk_preamble st what script =
246 convert st what @ script
248 let mk_arg st = function
249 | C.ARel (_, _, i, name) as what -> convert st ~name:(name, i) what
252 let mk_fwd_rewrite st dtext name tl direction v t ity =
253 let compare premise = function
255 | Some s -> s = premise
257 assert (List.length tl = 6);
258 let what, where, predicate = List.nth tl 5, List.nth tl 3, List.nth tl 2 in
259 let e = Cn.mk_pattern 1 predicate in
260 if (Cn.does_not_occur e) then st, [] else
262 | C.ARel (_, _, i, premise) as w ->
264 let where = Some (premise, name) in
265 let script = mk_arg st what @ mk_arg st w in
266 T.Rewrite (direction, what, where, e, dtext) :: script
268 if DTI.does_not_occur (succ i) (H.cic t) || compare premise name then
269 {st with context = Cn.clear st.context premise}, script name
271 assert (Ut.is_sober st.context (H.cic ity));
272 let ity = H.acic_bc st.context ity in
273 let br1 = [T.Id ""] in
274 let br2 = List.rev (T.Apply (w, "assumption") :: script None) in
275 let text = "non-linear rewrite" in
276 st, [T.Branch ([br2; br1], ""); T.Cut (name, ity, text)]
280 let mk_rewrite st dtext where qs tl direction t =
281 assert (List.length tl = 5);
282 let predicate = List.nth tl 2 in
283 let e = Cn.mk_pattern 1 predicate in
284 let script = [T.Branch (qs, "")] in
285 if (Cn.does_not_occur e) then script else
286 T.Rewrite (direction, where, None, e, dtext) :: script
288 let rec proc_lambda st what name v t =
289 let name = match name with
290 | C.Anonymous -> H.mk_fresh_name st.context anonymous_premise
293 let entry = Some (name, C.Decl (H.cic v)) in
294 let intro = get_intro name in
295 let script = proc_proof (add st entry) t in
296 let script = T.Intros (Some 1, [intro], "") :: script in
297 mk_preamble st what script
299 and proc_letin st what name v w t =
300 let intro = get_intro name in
301 let proceed, dtext = test_depth st in
302 let script = if proceed then
303 let st, hyp, rqv = match get_inner_types st v with
305 let st, rqv = match v with
306 | C.AAppl (_, hd :: tl) when is_fwd_rewrite_right hd tl ->
307 mk_fwd_rewrite st dtext intro tl true v t ity
308 | C.AAppl (_, hd :: tl) when is_fwd_rewrite_left hd tl ->
309 mk_fwd_rewrite st dtext intro tl false v t ity
311 assert (Ut.is_sober st.context (H.cic ity));
312 let ity = H.acic_bc st.context ity in
313 let qs = [proc_proof (next st) v; [T.Id ""]] in
314 st, [T.Branch (qs, ""); T.Cut (intro, ity, dtext)]
316 st, C.Decl (H.cic ity), rqv
318 st, C.Def (H.cic v, H.cic w), [T.LetIn (intro, v, dtext)]
320 let entry = Some (name, hyp) in
321 let qt = proc_proof (next (add st entry)) t in
322 List.rev_append rqv qt
324 [T.Apply (what, dtext)]
326 mk_preamble st what script
328 and proc_rel st what =
329 let _, dtext = test_depth st in
330 let text = "assumption" in
331 let script = [T.Apply (what, dtext ^ text)] in
332 mk_preamble st what script
334 and proc_mutconstruct st what =
335 let _, dtext = test_depth st in
336 let script = [T.Apply (what, dtext)] in
337 mk_preamble st what script
339 and proc_const st what =
340 let _, dtext = test_depth st in
341 let script = [T.Apply (what, dtext)] in
342 mk_preamble st what script
344 and proc_appl st what hd tl =
345 let proceed, dtext = test_depth st in
346 let script = if proceed then
347 let ty = match get_inner_types st hd with
348 | Some (ity, _) -> H.cic ity
349 | None -> get_type "TC2" st hd
351 let classes, rc = Cl.classify st.context ty in
352 let goal_arity, goal = match get_inner_types st what with
355 snd (PEH.split_with_whd (st.context, H.cic ity)), Some (H.cic ety)
357 let parsno, argsno = List.length classes, List.length tl in
358 let decurry = parsno - argsno in
359 let diff = goal_arity - decurry in
360 if diff < 0 then failwith (Printf.sprintf "NOT TOTAL: %i %s |--- %s" diff (Pp.ppcontext st.context) (Pp.ppterm (H.cic hd)));
361 let classes = Cl.adjust st.context tl ?goal classes in
362 let rec mk_synth a n =
363 if n < 0 then a else mk_synth (I.S.add n a) (pred n)
365 let synth = mk_synth I.S.empty decurry in
366 let text = "" (* Printf.sprintf "%u %s" parsno (Cl.to_string h) *) in
367 let script = List.rev (mk_arg st hd) in
369 | Some (i, j, uri, tyno) ->
370 let classes2, tl2, _, where = split2_last classes tl in
371 let script2 = List.rev (mk_arg st where) @ script in
372 let synth2 = I.S.add 1 synth in
373 let names = H.get_ind_names uri tyno in
374 let qs = proc_bkd_proofs (next st) synth2 names classes2 tl2 in
375 if List.length qs <> List.length names then
376 let qs = proc_bkd_proofs (next st) synth [] classes tl in
377 let hd = mk_exp_args hd tl classes synth in
378 script @ [T.Apply (hd, dtext ^ text); T.Branch (qs, "")]
379 else if is_rewrite_right hd then
380 script2 @ mk_rewrite st dtext where qs tl2 false what
381 else if is_rewrite_left hd then
382 script2 @ mk_rewrite st dtext where qs tl2 true what
384 let predicate = List.nth tl2 (parsno - i) in
385 let e = Cn.mk_pattern j predicate in
386 let using = Some hd in
388 [T.Elim (where, using, e, dtext ^ text); T.Branch (qs, "")]
390 let names = get_sub_names hd tl in
391 let qs = proc_bkd_proofs (next st) synth names classes tl in
392 let hd = mk_exp_args hd tl classes synth in
393 script @ [T.Apply (hd, dtext ^ text); T.Branch (qs, "")]
395 [T.Apply (what, dtext)]
397 mk_preamble st what script
399 and proc_case st what uri tyno u v ts =
400 let proceed, dtext = test_depth st in
401 let script = if proceed then
402 let synth, classes = I.S.empty, Cl.make ts in
403 let names = H.get_ind_names uri tyno in
404 let qs = proc_bkd_proofs (next st) synth names classes ts in
405 let lpsno, _ = H.get_ind_type uri tyno in
406 let ps, sort_disp = H.get_ind_parameters st.context (H.cic v) in
407 let _, rps = HEL.split_nth lpsno ps in
408 let rpsno = List.length rps in
409 let predicate = clear_absts rpsno (1 - sort_disp) u in
410 let e = Cn.mk_pattern rpsno predicate in
412 let script = List.rev (mk_arg st v) in
413 script @ [T.Cases (v, e, dtext ^ text); T.Branch (qs, "")]
415 [T.Apply (what, dtext)]
417 mk_preamble st what script
419 and proc_other st what =
420 let _, dtext = test_depth st in
421 let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head what) in
422 let script = [T.Apply (what, dtext ^ text)] in
423 mk_preamble st what script
425 and proc_proof st t =
427 let xtypes, note = match get_inner_types st t with
428 | Some (it, et) -> Some (H.cic it, H.cic et),
429 (Printf.sprintf "\nInferred: %s\nExpected: %s"
430 (Pp.ppterm (H.cic it)) (Pp.ppterm (H.cic et)))
431 | None -> None, "\nNo types"
433 let context, _clears = Cn.get_clears st.context (H.cic t) xtypes in
434 {st with context = context}
437 | C.ALambda (_, name, w, t) as what -> proc_lambda (f st) what name w t
438 | C.ALetIn (_, name, v, w, t) as what -> proc_letin (f st) what name v w t
439 | C.ARel _ as what -> proc_rel (f st) what
440 | C.AMutConstruct _ as what -> proc_mutconstruct (f st) what
441 | C.AConst _ as what -> proc_const (f st) what
442 | C.AAppl (_, hd :: tl) as what -> proc_appl (f st) what hd tl
443 | C.AMutCase (_, uri, i, u, v, ts) as what -> proc_case (f st) what uri i u v ts
444 | what -> proc_other (f st) what
446 and proc_bkd_proofs st synth names classes ts =
448 let get_names b = ref (names, if b then push st else st) in
449 let get_note f b names =
452 | "" :: tl, st -> names := tl, st; f st
454 let note = case st hd in
456 if b then T.Note note :: f st else f st
458 let _, dtext = test_depth st in
460 if I.overlaps synth inv then None else
461 if I.S.is_empty inv then Some (get_note (fun st -> proc_proof st v)) else
462 Some (get_note (fun _ -> [T.Apply (v, dtext ^ "dependent")]))
464 let ps = T.list_map2_filter aux classes ts in
465 let b = List.length ps > 1 in
466 let names = get_names b in
467 List.rev_map (fun f -> f b names) ps
469 with Invalid_argument s -> failwith ("A2P.proc_bkd_proofs: " ^ s)
471 (* object costruction *******************************************************)
473 let th_flavours = [`Theorem; `Lemma; `Remark; `Fact]
475 let def_flavours = [`Definition]
477 let get_flavour ?flavour attrs =
478 let rec aux = function
479 | [] -> List.hd th_flavours
480 | `Flavour fl :: _ -> fl
487 let proc_obj ?flavour ?(info="") st = function
488 | C.AConstant (_, _, s, Some v, t, [], attrs) ->
489 begin match get_flavour ?flavour attrs with
490 | flavour when List.mem flavour th_flavours ->
491 let ast = proc_proof st v in
492 let steps, nodes = T.count_steps 0 ast, T.count_nodes 0 ast in
493 let text = Printf.sprintf "%s\n%s%s: %u\n%s: %u\n%s"
494 "COMMENTS" info "Tactics" steps "Final nodes" nodes "END"
496 T.Statement (flavour, Some s, t, None, "") :: ast @ [T.Qed text]
497 | flavour when List.mem flavour def_flavours ->
498 [T.Statement (flavour, Some s, t, Some v, "")]
500 failwith "not a theorem, definition, axiom or inductive type"
502 | C.AConstant (_, _, s, None, t, [], attrs) ->
503 [T.Statement (`Axiom, Some s, t, None, "")]
504 | C.AInductiveDefinition (_, types, [], lpsno, attrs) ->
505 [T.Inductive (types, lpsno, "")]
507 failwith "not a theorem, definition, axiom or inductive type"
509 (* interface functions ******************************************************)
511 let procedural_of_acic_object ~ids_to_inner_sorts ~ids_to_inner_types
512 ?info ?depth ?flavour prefix anobj =
514 sorts = ids_to_inner_sorts;
515 types = ids_to_inner_types;
521 L.time_stamp "P : LEVEL 1 ";
522 HLog.debug "Procedural: level 1 transformation";
523 let steps = proc_obj st ?flavour ?info anobj in
524 let _ = match !tex_formatter with
526 | Some frm -> X.tex_of_steps frm st.sorts steps
528 L.time_stamp "P : RENDERING";
529 HLog.debug "Procedural: grafite rendering";
530 let r = List.rev (T.render_steps [] steps) in
531 L.time_stamp "P : DONE "; r
533 let procedural_of_acic_term ~ids_to_inner_sorts ~ids_to_inner_types ?depth
534 prefix context annterm =
536 sorts = ids_to_inner_sorts;
537 types = ids_to_inner_types;
543 HLog.debug "Procedural: level 1 transformation";
544 let steps = proc_proof st annterm in
545 let _ = match !tex_formatter with
547 | Some frm -> X.tex_of_steps frm st.sorts steps
549 HLog.debug "Procedural: grafite rendering";
550 List.rev (T.render_steps [] steps)