1 (* Copyright (C) 2003-2005, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
28 module S = CicSubstitution
29 module TC = CicTypeChecker
31 module UM = UriManager
32 module Obj = LibraryObjects
33 module HObj = HelmLibraryObjects
36 module E = CicEnvironment
38 module PEH = ProofEngineHelpers
40 module DTI = DoubleTypeInference
41 module NU = CicNotationUtil
44 module Cl = ProceduralClassify
45 module T = ProceduralTypes
46 module Cn = ProceduralConversion
47 module H = ProceduralHelpers
50 sorts : (C.id, A.sort_kind) Hashtbl.t;
51 types : (C.id, A.anntypes) Hashtbl.t;
52 max_depth: int option;
60 (* helpers ******************************************************************)
62 let split2_last l1 l2 =
64 let n = pred (List.length l1) in
65 let before1, after1 = HEL.split_nth n l1 in
66 let before2, after2 = HEL.split_nth n l2 in
67 before1, before2, List.hd after1, List.hd after2
68 with Invalid_argument _ -> failwith "A2P.split2_last"
70 let string_of_head = function
72 | C.AConst _ -> "const"
73 | C.AMutInd _ -> "mutind"
74 | C.AMutConstruct _ -> "mutconstruct"
78 | C.ALambda _ -> "lambda"
79 | C.ALetIn _ -> "letin"
81 | C.ACoFix _ -> "cofix"
84 | C.AMutCase _ -> "mutcase"
86 | C.AImplicit _ -> "implict"
88 let next st = {st with depth = succ st.depth}
90 let add st entry = {st with context = entry :: st.context}
92 let push st = {st with case = 1 :: st.case}
95 {st with case = match st.case with
97 | hd :: tl -> succ hd :: tl
101 let case = String.concat "." (List.rev_map string_of_int st.case) in
102 Printf.sprintf "case %s: %s" case str
106 let msg = Printf.sprintf "Depth %u: " st.depth in
107 match st.max_depth with
109 | Some d -> if st.depth < d then true, msg else false, "DEPTH EXCEDED: "
110 with Invalid_argument _ -> failwith "A2P.test_depth"
112 let is_rewrite_right = function
113 | C.AConst (_, uri, []) ->
114 UM.eq uri HObj.Logic.eq_ind_r_URI || Obj.is_eq_ind_r_URI uri
117 let is_rewrite_left = function
118 | C.AConst (_, uri, []) ->
119 UM.eq uri HObj.Logic.eq_ind_URI || Obj.is_eq_ind_URI uri
122 let is_fwd_rewrite_right hd tl =
123 if is_rewrite_right hd then match List.nth tl 3 with
128 let is_fwd_rewrite_left hd tl =
129 if is_rewrite_left hd then match List.nth tl 3 with
134 let get_inner_types st v =
136 let id = Ut.id_of_annterm v in
137 try match Hashtbl.find st.types id with
138 | {A.annsynthesized = st; A.annexpected = Some et} -> Some (st, et)
139 | {A.annsynthesized = st; A.annexpected = None} -> Some (st, st)
140 with Not_found -> None
141 with Invalid_argument _ -> failwith "A2P.get_inner_types"
143 let get_inner_sort st v =
145 let id = Ut.id_of_annterm v in
146 try Hashtbl.find st.sorts id
147 with Not_found -> `Type (CicUniv.fresh())
148 with Invalid_argument _ -> failwith "A2P.get_sort"
150 let get_entry st id =
151 let rec aux = function
153 | Some (C.Name name, e) :: _ when name = id -> e
158 let string_of_atomic = function
159 | C.ARel (_, _, _, s) -> s
160 | C.AVar (_, uri, _) -> H.name_of_uri uri None None
161 | C.AConst (_, uri, _) -> H.name_of_uri uri None None
162 | C.AMutInd (_, uri, i, _) -> H.name_of_uri uri (Some i) None
163 | C.AMutConstruct (_, uri, i, j, _) -> H.name_of_uri uri (Some i) (Some j)
166 let get_sub_names head l =
167 let s = string_of_atomic head in
168 if s = "" then [] else
169 let map (names, i) _ =
170 let name = Printf.sprintf "%s_%u" s i in name :: names, succ i
172 let names, _ = List.fold_left map ([], 1) l in
175 let get_type msg st t = H.get_type msg st.context (H.cic t)
177 (* proof construction *******************************************************)
179 let anonymous_premise = C.Name "UNNAMED"
181 let mk_exp_args hd tl classes synth =
182 let meta id = C.AImplicit (id, None) in
184 if I.overlaps synth cl && b then v else meta ""
186 let rec aux = function
188 | hd :: tl -> if hd = meta "" then aux tl else List.rev (hd :: tl)
190 let args = T.list_rev_map2 map tl classes in
191 let args = aux args in
192 if args = [] then hd else C.AAppl ("", hd :: args)
194 let mk_convert st ?name sty ety note =
195 let e = Cn.hole "" in
196 let csty, cety = H.cic sty, H.cic ety in
199 let sname = match name with None -> "" | Some (id, _) -> id in
200 let note = Printf.sprintf "%s: %s\nSINTH: %s\nEXP: %s"
201 note sname (Pp.ppterm csty) (Pp.ppterm cety)
206 assert (Ut.is_sober st.context csty);
207 assert (Ut.is_sober st.context cety);
208 if Ut.alpha_equivalence csty cety then script else
209 let sty, ety = H.acic_bc st.context sty, H.acic_bc st.context ety in
211 | None -> T.Change (sty, ety, None, e, "") :: script
213 begin match get_entry st id with
214 | C.Def _ -> assert false (* T.ClearBody (id, "") :: script *)
216 T.Change (ety, sty, Some (id, Some id), e, "") :: script
219 let convert st ?name v =
220 match get_inner_types st v with
222 if !debug then [T.Note "NORMAL: NO INNER TYPES"] else []
223 | Some (sty, ety) -> mk_convert st ?name sty ety "NORMAL"
225 let get_intro = function
226 | C.Anonymous -> None
229 let mk_preamble st what script =
230 convert st what @ script
232 let mk_arg st = function
233 | C.ARel (_, _, i, name) as what -> convert st ~name:(name, i) what
236 let mk_fwd_rewrite st dtext name tl direction v t ity =
237 let compare premise = function
239 | Some s -> s = premise
241 assert (List.length tl = 6);
242 let what, where, predicate = List.nth tl 5, List.nth tl 3, List.nth tl 2 in
243 let e = Cn.mk_pattern 1 predicate in
244 if (Cn.does_not_occur e) then st, [] else
246 | C.ARel (_, _, i, premise) as w ->
248 let where = Some (premise, name) in
249 let script = mk_arg st what @ mk_arg st w in
250 T.Rewrite (direction, what, where, e, dtext) :: script
252 if DTI.does_not_occur (succ i) (H.cic t) || compare premise name then
253 {st with context = Cn.clear st.context premise}, script name
255 assert (Ut.is_sober st.context (H.cic ity));
256 let ity = H.acic_bc st.context ity in
257 let br1 = [T.Id ""] in
258 let br2 = List.rev (T.Apply (w, "assumption") :: script None) in
259 let text = "non-linear rewrite" in
260 st, [T.Branch ([br2; br1], ""); T.Cut (name, ity, text)]
264 let mk_rewrite st dtext where qs tl direction t =
265 assert (List.length tl = 5);
266 let predicate = List.nth tl 2 in
267 let e = Cn.mk_pattern 1 predicate in
268 let script = [T.Branch (qs, "")] in
269 if (Cn.does_not_occur e) then script else
270 T.Rewrite (direction, where, None, e, dtext) :: script
272 let rec proc_lambda st what name v t =
273 let name = match name with
274 | C.Anonymous -> H.mk_fresh_name st.context anonymous_premise
277 let entry = Some (name, C.Decl (H.cic v)) in
278 let intro = get_intro name in
279 let script = proc_proof (add st entry) t in
280 let script = T.Intros (Some 1, [intro], "") :: script in
281 mk_preamble st what script
283 and proc_letin st what name v w t =
284 let intro = get_intro name in
285 let proceed, dtext = test_depth st in
286 let script = if proceed then
287 let st, hyp, rqv = match get_inner_types st v with
289 let st, rqv = match v with
290 | C.AAppl (_, hd :: tl) when is_fwd_rewrite_right hd tl ->
291 mk_fwd_rewrite st dtext intro tl true v t ity
292 | C.AAppl (_, hd :: tl) when is_fwd_rewrite_left hd tl ->
293 mk_fwd_rewrite st dtext intro tl false v t ity
295 assert (Ut.is_sober st.context (H.cic ity));
296 let ity = H.acic_bc st.context ity in
297 let qs = [proc_proof (next st) v; [T.Id ""]] in
298 st, [T.Branch (qs, ""); T.Cut (intro, ity, dtext)]
300 st, C.Decl (H.cic ity), rqv
302 st, C.Def (H.cic v, H.cic w), [T.LetIn (intro, v, dtext)]
304 let entry = Some (name, hyp) in
305 let qt = proc_proof (next (add st entry)) t in
306 List.rev_append rqv qt
308 [T.Apply (what, dtext)]
310 mk_preamble st what script
312 and proc_rel st what =
313 let _, dtext = test_depth st in
314 let text = "assumption" in
315 let script = [T.Apply (what, dtext ^ text)] in
316 mk_preamble st what script
318 and proc_mutconstruct st what =
319 let _, dtext = test_depth st in
320 let script = [T.Apply (what, dtext)] in
321 mk_preamble st what script
323 and proc_const st what =
324 let _, dtext = test_depth st in
325 let script = [T.Apply (what, dtext)] in
326 mk_preamble st what script
328 and proc_appl st what hd tl =
329 let proceed, dtext = test_depth st in
330 let script = if proceed then
331 let ty = match get_inner_types st hd with
332 | Some (ity, _) -> H.cic ity
333 | None -> get_type "TC2" st hd
335 let classes, rc = Cl.classify st.context ty in
336 let goal_arity, goal = match get_inner_types st what with
339 snd (PEH.split_with_whd (st.context, H.cic ity)), Some (H.cic ety)
341 let parsno, argsno = List.length classes, List.length tl in
342 let decurry = parsno - argsno in
343 let diff = goal_arity - decurry in
344 if diff < 0 then failwith (Printf.sprintf "NOT TOTAL: %i %s |--- %s" diff (Pp.ppcontext st.context) (Pp.ppterm (H.cic hd)));
345 let classes = Cl.adjust st.context tl ?goal classes in
346 let rec mk_synth a n =
347 if n < 0 then a else mk_synth (I.S.add n a) (pred n)
349 let synth = mk_synth I.S.empty decurry in
350 let text = "" (* Printf.sprintf "%u %s" parsno (Cl.to_string h) *) in
351 let script = List.rev (mk_arg st hd) in
353 | Some (i, j, uri, tyno) ->
354 let classes2, tl2, _, where = split2_last classes tl in
355 let script2 = List.rev (mk_arg st where) @ script in
356 let synth2 = I.S.add 1 synth in
357 let names = H.get_ind_names uri tyno in
358 let qs = proc_bkd_proofs (next st) synth2 names classes2 tl2 in
359 if List.length qs <> List.length names then
360 let qs = proc_bkd_proofs (next st) synth [] classes tl in
361 let hd = mk_exp_args hd tl classes synth in
362 script @ [T.Apply (hd, dtext ^ text); T.Branch (qs, "")]
363 else if is_rewrite_right hd then
364 script2 @ mk_rewrite st dtext where qs tl2 false what
365 else if is_rewrite_left hd then
366 script2 @ mk_rewrite st dtext where qs tl2 true what
368 let predicate = List.nth tl2 (parsno - i) in
369 let e = Cn.mk_pattern j predicate in
370 let using = Some hd in
372 [T.Elim (where, using, e, dtext ^ text); T.Branch (qs, "")]
374 let names = get_sub_names hd tl in
375 let qs = proc_bkd_proofs (next st) synth names classes tl in
376 let hd = mk_exp_args hd tl classes synth in
377 script @ [T.Apply (hd, dtext ^ text); T.Branch (qs, "")]
379 [T.Apply (what, dtext)]
381 mk_preamble st what script
383 and proc_other st what =
384 let _, dtext = test_depth st in
385 let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head what) in
386 let script = [T.Apply (what, dtext ^ text)] in
387 mk_preamble st what script
389 and proc_proof st t =
391 let xtypes, note = match get_inner_types st t with
392 | Some (it, et) -> Some (H.cic it, H.cic et),
393 (Printf.sprintf "\nInferred: %s\nExpected: %s"
394 (Pp.ppterm (H.cic it)) (Pp.ppterm (H.cic et)))
395 | None -> None, "\nNo types"
397 let context, _clears = Cn.get_clears st.context (H.cic t) xtypes in
398 {st with context = context}
401 | C.ALambda (_, name, w, t) as what -> proc_lambda (f st) what name w t
402 | C.ALetIn (_, name, v, w, t) as what -> proc_letin (f st) what name v w t
403 | C.ARel _ as what -> proc_rel (f st) what
404 | C.AMutConstruct _ as what -> proc_mutconstruct (f st) what
405 | C.AConst _ as what -> proc_const (f st) what
406 | C.AAppl (_, hd :: tl) as what -> proc_appl (f st) what hd tl
407 | what -> proc_other (f st) what
409 and proc_bkd_proofs st synth names classes ts =
411 let get_names b = ref (names, if b then push st else st) in
412 let get_note f b names =
415 | "" :: tl, st -> names := tl, st; f st
417 let note = case st hd in
419 if b then T.Note note :: f st else f st
421 let _, dtext = test_depth st in
423 if I.overlaps synth inv then None else
424 if I.S.is_empty inv then Some (get_note (fun st -> proc_proof st v)) else
425 Some (get_note (fun _ -> [T.Apply (v, dtext ^ "dependent")]))
427 let ps = T.list_map2_filter aux classes ts in
428 let b = List.length ps > 1 in
429 let names = get_names b in
430 List.rev_map (fun f -> f b names) ps
432 with Invalid_argument s -> failwith ("A2P.proc_bkd_proofs: " ^ s)
434 (* object costruction *******************************************************)
436 let th_flavours = [`Theorem; `Lemma; `Remark; `Fact]
438 let def_flavours = [`Definition]
440 let get_flavour ?flavour attrs =
441 let rec aux = function
442 | [] -> List.hd th_flavours
443 | `Flavour fl :: _ -> fl
450 let proc_obj ?flavour ?(info="") st = function
451 | C.AConstant (_, _, s, Some v, t, [], attrs) ->
452 begin match get_flavour ?flavour attrs with
453 | flavour when List.mem flavour th_flavours ->
454 let ast = proc_proof st v in
455 let steps, nodes = T.count_steps 0 ast, T.count_nodes 0 ast in
456 let text = Printf.sprintf "%s\n%s%s: %u\n%s: %u\n%s"
457 "COMMENTS" info "Tactics" steps "Final nodes" nodes "END"
459 T.Statement (flavour, Some s, t, None, "") :: ast @ [T.Qed text]
460 | flavour when List.mem flavour def_flavours ->
461 [T.Statement (flavour, Some s, t, Some v, "")]
463 failwith "not a theorem, definition, axiom or inductive type"
465 | C.AConstant (_, _, s, None, t, [], attrs) ->
466 [T.Statement (`Axiom, Some s, t, None, "")]
467 | C.AInductiveDefinition (_, types, [], lpsno, attrs) ->
468 [T.Inductive (types, lpsno, "")]
470 failwith "not a theorem, definition, axiom or inductive type"
472 (* interface functions ******************************************************)
474 let procedural_of_acic_object ~ids_to_inner_sorts ~ids_to_inner_types
475 ?info ?depth ?flavour prefix anobj =
477 sorts = ids_to_inner_sorts;
478 types = ids_to_inner_types;
484 L.time_stamp "P : LEVEL 2 ";
485 HLog.debug "Procedural: level 2 transformation";
486 let steps = proc_obj st ?flavour ?info anobj in
487 L.time_stamp "P : RENDERING";
488 HLog.debug "Procedural: grafite rendering";
489 let r = List.rev (T.render_steps [] steps) in
490 L.time_stamp "P : DONE "; r
492 let procedural_of_acic_term ~ids_to_inner_sorts ~ids_to_inner_types ?depth
493 prefix context annterm =
495 sorts = ids_to_inner_sorts;
496 types = ids_to_inner_types;
502 HLog.debug "Procedural: level 2 transformation";
503 let steps = proc_proof st annterm in
504 HLog.debug "Procedural: grafite rendering";
505 List.rev (T.render_steps [] steps)