1 (* Copyright (C) 2003-2005, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
28 module S = CicSubstitution
29 module TC = CicTypeChecker
31 module UM = UriManager
32 module Obj = LibraryObjects
33 module HObj = HelmLibraryObjects
36 module E = CicEnvironment
38 module PEH = ProofEngineHelpers
40 module DTI = DoubleTypeInference
42 module Cl = ProceduralClassify
43 module T = ProceduralTypes
44 module Cn = ProceduralConversion
45 module H = ProceduralHelpers
48 sorts : (C.id, A.sort_kind) Hashtbl.t;
49 types : (C.id, A.anntypes) Hashtbl.t;
50 max_depth: int option;
58 (* helpers ******************************************************************)
60 let split2_last l1 l2 =
62 let n = pred (List.length l1) in
63 let before1, after1 = HEL.split_nth n l1 in
64 let before2, after2 = HEL.split_nth n l2 in
65 before1, before2, List.hd after1, List.hd after2
66 with Invalid_argument _ -> failwith "A2P.split2_last"
68 let string_of_head = function
70 | C.AConst _ -> "const"
71 | C.AMutInd _ -> "mutind"
72 | C.AMutConstruct _ -> "mutconstruct"
76 | C.ALambda _ -> "lambda"
77 | C.ALetIn _ -> "letin"
79 | C.ACoFix _ -> "cofix"
82 | C.AMutCase _ -> "mutcase"
84 | C.AImplicit _ -> "implict"
86 let next st = {st with depth = succ st.depth}
88 let add st entry = {st with context = entry :: st.context}
90 let push st = {st with case = 1 :: st.case}
93 {st with case = match st.case with
95 | hd :: tl -> succ hd :: tl
99 let case = String.concat "." (List.rev_map string_of_int st.case) in
100 Printf.sprintf "case %s: %s" case str
104 let msg = Printf.sprintf "Depth %u: " st.depth in
105 match st.max_depth with
107 | Some d -> if st.depth < d then true, msg else false, "DEPTH EXCEDED: "
108 with Invalid_argument _ -> failwith "A2P.test_depth"
110 let is_rewrite_right = function
111 | C.AConst (_, uri, []) ->
112 UM.eq uri HObj.Logic.eq_ind_r_URI || Obj.is_eq_ind_r_URI uri
115 let is_rewrite_left = function
116 | C.AConst (_, uri, []) ->
117 UM.eq uri HObj.Logic.eq_ind_URI || Obj.is_eq_ind_URI uri
120 let is_fwd_rewrite_right hd tl =
121 if is_rewrite_right hd then match List.nth tl 3 with
126 let is_fwd_rewrite_left hd tl =
127 if is_rewrite_left hd then match List.nth tl 3 with
132 let get_inner_types st v =
134 let id = Ut.id_of_annterm v in
135 try match Hashtbl.find st.types id with
136 | {A.annsynthesized = st; A.annexpected = Some et} -> Some (st, et)
137 | {A.annsynthesized = st; A.annexpected = None} -> Some (st, st)
138 with Not_found -> None
139 with Invalid_argument _ -> failwith "A2P.get_inner_types"
141 let get_inner_sort st v =
143 let id = Ut.id_of_annterm v in
144 try Hashtbl.find st.sorts id
145 with Not_found -> `Type (CicUniv.fresh())
146 with Invalid_argument _ -> failwith "A2P.get_sort"
148 let get_type msg st bo =
150 let ty, _ = TC.type_of_aux' [] st.context (H.cic bo) Un.oblivion_ugraph in
152 with e -> failwith (msg ^ ": " ^ Printexc.to_string e)
154 let get_entry st id =
155 let rec aux = function
157 | Some (C.Name name, e) :: _ when name = id -> e
162 let get_ind_names uri tno =
164 let ts = match E.get_obj Un.oblivion_ugraph uri with
165 | C.InductiveDefinition (ts, _, _, _), _ -> ts
168 match List.nth ts tno with
169 | (_, _, _, cs) -> List.map fst cs
170 with Invalid_argument _ -> failwith "A2P.get_ind_names"
172 let string_of_atomic = function
173 | C.ARel (_, _, _, s) -> s
174 | C.AVar (_, uri, _) -> H.name_of_uri uri None None
175 | C.AConst (_, uri, _) -> H.name_of_uri uri None None
176 | C.AMutInd (_, uri, i, _) -> H.name_of_uri uri (Some i) None
177 | C.AMutConstruct (_, uri, i, j, _) -> H.name_of_uri uri (Some i) (Some j)
180 let get_sub_names head l =
181 let s = string_of_atomic head in
182 if s = "" then [] else
183 let map (names, i) _ =
184 let name = Printf.sprintf "%s_%u" s i in name :: names, succ i
186 let names, _ = List.fold_left map ([], 1) l in
189 (* proof construction *******************************************************)
191 let anonymous_premise = C.Name "PREMISE"
193 let mk_exp_args hd tl classes synth =
194 let meta id = C.AImplicit (id, None) in
196 if I.overlaps synth cl && b then v else meta ""
198 let rec aux = function
200 | hd :: tl -> if hd = meta "" then aux tl else List.rev (hd :: tl)
202 let args = T.list_rev_map2 map tl classes in
203 let args = aux args in
204 if args = [] then hd else C.AAppl ("", hd :: args)
206 let mk_convert st ?name sty ety note =
207 let e = Cn.hole "" in
208 let csty, cety = H.cic sty, H.cic ety in
211 let sname = match name with None -> "" | Some (id, _) -> id in
212 let note = Printf.sprintf "%s: %s\nSINTH: %s\nEXP: %s"
213 note sname (Pp.ppterm csty) (Pp.ppterm cety)
218 assert (Ut.is_sober st.context csty);
219 assert (Ut.is_sober st.context cety);
220 if Ut.alpha_equivalence csty cety then script else
221 let sty, ety = H.acic_bc st.context sty, H.acic_bc st.context ety in
223 | None -> T.Change (sty, ety, None, e, "") :: script
225 begin match get_entry st id with
226 | C.Def _ -> assert false (* T.ClearBody (id, "") :: script *)
228 T.Change (ety, sty, Some (id, Some id), e, "") :: script
231 let convert st ?name v =
232 match get_inner_types st v with
234 if debug then [T.Note "NORMAL: NO INNER TYPES"] else []
235 | Some (sty, ety) -> mk_convert st ?name sty ety "NORMAL"
237 let convert_elim st ?name t v pattern =
238 match t, get_inner_types st t, get_inner_types st v with
240 | _, _, None -> [(* T.Note "ELIM: NO INNER TYPES"*)]
241 | C.AAppl (_, hd :: tl), Some (tsty, _), Some (vsty, _) ->
242 let where = List.hd (List.rev tl) in
243 let cty = Cn.elim_inferred_type
244 st.context (H.cic vsty) (H.cic where) (H.cic hd) (H.cic pattern)
246 mk_convert st ?name (Cn.fake_annotate "" st.context cty) tsty "ELIM"
247 | _, Some _, Some _ -> assert false
249 let get_intro = function
250 | C.Anonymous -> None
253 let mk_preamble st what script =
254 convert st what @ script
256 let mk_arg st = function
257 | C.ARel (_, _, i, name) as what -> convert st ~name:(name, i) what
260 let mk_fwd_rewrite st dtext name tl direction v t ity =
261 let compare premise = function
263 | Some s -> s = premise
265 assert (List.length tl = 6);
266 let what, where, predicate = List.nth tl 5, List.nth tl 3, List.nth tl 2 in
267 let e = Cn.mk_pattern 1 predicate in
268 if (Cn.does_not_occur e) then st, [] else
270 | C.ARel (_, _, i, premise) as w ->
271 (* let _script = convert_elim st ~name:(premise, i) v w e in *)
273 let where = Some (premise, name) in
274 let script = mk_arg st what @ mk_arg st w (* @ script *) in
275 T.Rewrite (direction, what, where, e, dtext) :: script
277 if DTI.does_not_occur (succ i) (H.cic t) || compare premise name then
278 {st with context = Cn.clear st.context premise}, script name
280 assert (Ut.is_sober st.context (H.cic ity));
281 let ity = H.acic_bc st.context ity in
282 let br1 = [T.Id ""] in
283 let br2 = List.rev (T.Apply (w, "assumption") :: script None) in
284 let text = "non linear rewrite" in
285 st, [T.Branch ([br2; br1], ""); T.Cut (name, ity, text)]
289 let mk_rewrite st dtext where qs tl direction t =
290 assert (List.length tl = 5);
291 let predicate = List.nth tl 2 in
292 let e = Cn.mk_pattern 1 predicate in
293 let script = [T.Branch (qs, "")] in
294 if (Cn.does_not_occur e) then script else
295 (* let script = convert_elim st t t e in *)
296 T.Rewrite (direction, where, None, e, dtext) :: script
298 let rec proc_lambda st what name v t =
299 let name = match name with
300 | C.Anonymous -> H.mk_fresh_name st.context anonymous_premise
303 let entry = Some (name, C.Decl (H.cic v)) in
304 let intro = get_intro name in
305 let script = proc_proof (add st entry) t in
306 let script = T.Intros (Some 1, [intro], "") :: script in
307 mk_preamble st what script
309 and proc_letin st what name v w t =
310 let intro = get_intro name in
311 let proceed, dtext = test_depth st in
312 let script = if proceed then
313 let st, hyp, rqv = match get_inner_types st v with
315 let st, rqv = match v with
316 | C.AAppl (_, hd :: tl) when is_fwd_rewrite_right hd tl ->
317 mk_fwd_rewrite st dtext intro tl true v t ity
318 | C.AAppl (_, hd :: tl) when is_fwd_rewrite_left hd tl ->
319 mk_fwd_rewrite st dtext intro tl false v t ity
321 assert (Ut.is_sober st.context (H.cic ity));
322 let ity = H.acic_bc st.context ity in
323 let qs = [proc_proof (next st) v; [T.Id ""]] in
324 st, [T.Branch (qs, ""); T.Cut (intro, ity, dtext)]
326 st, C.Decl (H.cic ity), rqv
328 st, C.Def (H.cic v, H.cic w), [T.LetIn (intro, v, dtext)]
330 let entry = Some (name, hyp) in
331 let qt = proc_proof (next (add st entry)) t in
332 List.rev_append rqv qt
334 [T.Apply (what, dtext)]
336 mk_preamble st what script
338 and proc_rel st what =
339 let _, dtext = test_depth st in
340 let text = "assumption" in
341 let script = [T.Apply (what, dtext ^ text)] in
342 mk_preamble st what script
344 and proc_mutconstruct st what =
345 let _, dtext = test_depth st in
346 let script = [T.Apply (what, dtext)] in
347 mk_preamble st what script
349 and proc_const st what =
350 let _, dtext = test_depth st in
351 let script = [T.Apply (what, dtext)] in
352 mk_preamble st what script
354 and proc_appl st what hd tl =
355 let proceed, dtext = test_depth st in
356 let script = if proceed then
357 let ty = get_type "TC2" st hd in
358 let classes, rc = Cl.classify st.context ty in
359 let goal_arity, goal = match get_inner_types st what with
362 snd (PEH.split_with_whd (st.context, H.cic ity)), Some (H.cic ety)
364 let parsno, argsno = List.length classes, List.length tl in
365 let decurry = parsno - argsno in
366 let diff = goal_arity - decurry in
367 if diff < 0 then failwith (Printf.sprintf "NOT TOTAL: %i %s |--- %s" diff (Pp.ppcontext st.context) (Pp.ppterm (H.cic hd)));
368 let classes = Cl.adjust st.context tl ?goal classes in
369 let rec mk_synth a n =
370 if n < 0 then a else mk_synth (I.S.add n a) (pred n)
372 let synth = mk_synth I.S.empty decurry in
373 let text = "" (* Printf.sprintf "%u %s" parsno (Cl.to_string h) *) in
374 let script = List.rev (mk_arg st hd) in
376 | Some (i, j, uri, tyno) ->
377 let classes2, tl2, _, where = split2_last classes tl in
378 let script2 = List.rev (mk_arg st where) @ script in
379 let synth2 = I.S.add 1 synth in
380 let names = get_ind_names uri tyno in
381 let qs = proc_bkd_proofs (next st) synth2 names classes2 tl2 in
382 if List.length qs <> List.length names then
383 let qs = proc_bkd_proofs (next st) synth [] classes tl in
384 let hd = mk_exp_args hd tl classes synth in
385 script @ [T.Apply (hd, dtext ^ text); T.Branch (qs, "")]
386 else if is_rewrite_right hd then
387 script2 @ mk_rewrite st dtext where qs tl2 false what
388 else if is_rewrite_left hd then
389 script2 @ mk_rewrite st dtext where qs tl2 true what
391 let predicate = List.nth tl2 (parsno - i) in
392 let e = Cn.mk_pattern j predicate in
393 let using = Some hd in
394 (* convert_elim st what what e @ *) script2 @
395 [T.Elim (where, using, e, dtext ^ text); T.Branch (qs, "")]
397 let names = get_sub_names hd tl in
398 let qs = proc_bkd_proofs (next st) synth names classes tl in
399 let hd = mk_exp_args hd tl classes synth in
400 script @ [T.Apply (hd, dtext ^ text); T.Branch (qs, "")]
402 [T.Apply (what, dtext)]
404 mk_preamble st what script
406 and proc_other st what =
407 let _, dtext = test_depth st in
408 let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head what) in
409 let script = [T.Apply (what, dtext ^ text)] in
410 mk_preamble st what script
412 and proc_proof st t =
414 let xtypes, note = match get_inner_types st t with
415 | Some (it, et) -> Some (H.cic it, H.cic et),
416 (Printf.sprintf "\nInferred: %s\nExpected: %s"
417 (Pp.ppterm (H.cic it)) (Pp.ppterm (H.cic et)))
418 | None -> None, "\nNo types"
420 let context, _clears = Cn.get_clears st.context (H.cic t) xtypes in
421 {st with context = context}
424 | C.ALambda (_, name, w, t) as what -> proc_lambda (f st) what name w t
425 | C.ALetIn (_, name, v, w, t) as what -> proc_letin (f st) what name v w t
426 | C.ARel _ as what -> proc_rel (f st) what
427 | C.AMutConstruct _ as what -> proc_mutconstruct (f st) what
428 | C.AConst _ as what -> proc_const (f st) what
429 | C.AAppl (_, hd :: tl) as what -> proc_appl (f st) what hd tl
430 | what -> proc_other (f st) what
432 and proc_bkd_proofs st synth names classes ts =
435 let names = ref (names, push st) in
438 | [], st -> fun _ -> f st
439 | "" :: tl, st -> names := tl, st; fun _ -> f st
441 let note = case st hd in
443 fun b -> if b then T.Note note :: f st else f st
445 let _, dtext = test_depth st in
447 if I.overlaps synth inv then None else
448 if I.S.is_empty inv then Some (get_note (fun st -> proc_proof st v)) else
449 Some (get_note (fun _ -> [T.Apply (v, dtext ^ "dependent")]))
451 let ps = T.list_map2_filter aux classes ts in
452 let b = List.length ps > 1 in
453 List.rev_map (fun f -> f b) ps
455 with Invalid_argument s -> failwith ("A2P.proc_bkd_proofs: " ^ s)
457 (* object costruction *******************************************************)
459 let is_theorem pars =
461 List.mem (`Flavour `Theorem) pars || List.mem (`Flavour `Fact) pars ||
462 List.mem (`Flavour `Remark) pars || List.mem (`Flavour `Lemma) pars
464 let is_definition pars =
465 List.mem (`Flavour `Definition) pars
467 let proc_obj st = function
468 | C.AConstant (_, _, s, Some v, t, [], pars) when is_theorem pars ->
469 let ast = proc_proof st v in
470 let steps, nodes = T.count_steps 0 ast, T.count_nodes 0 ast in
471 let text = Printf.sprintf "tactics: %u\nnodes: %u" steps nodes in
472 T.Statement (`Theorem, Some s, t, None, "") :: ast @ [T.Qed text]
473 | C.AConstant (_, _, s, Some v, t, [], pars) when is_definition pars ->
474 [T.Statement (`Definition, Some s, t, Some v, "")]
475 | C.AConstant (_, _, s, None, t, [], pars) ->
476 [T.Statement (`Axiom, Some s, t, None, "")]
478 failwith "not a theorem, definition, axiom"
480 (* interface functions ******************************************************)
482 let procedural_of_acic_object ~ids_to_inner_sorts ~ids_to_inner_types ?depth
485 sorts = ids_to_inner_sorts;
486 types = ids_to_inner_types;
492 HLog.debug "Procedural: level 2 transformation";
493 let steps = proc_obj st anobj in
494 HLog.debug "Procedural: grafite rendering";
495 List.rev (T.render_steps [] steps)
497 let procedural_of_acic_term ~ids_to_inner_sorts ~ids_to_inner_types ?depth
498 prefix context annterm =
500 sorts = ids_to_inner_sorts;
501 types = ids_to_inner_types;
507 HLog.debug "Procedural: level 2 transformation";
508 let steps = proc_proof st annterm in
509 HLog.debug "Procedural: grafite rendering";
510 List.rev (T.render_steps [] steps)