1 (* Copyright (C) 2003-2005, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
28 module S = CicSubstitution
29 module TC = CicTypeChecker
31 module UM = UriManager
32 module Obj = LibraryObjects
33 module HObj = HelmLibraryObjects
36 module E = CicEnvironment
38 module PEH = ProofEngineHelpers
40 module DTI = DoubleTypeInference
41 module NU = CicNotationUtil
44 module Cl = ProceduralClassify
45 module T = ProceduralTypes
46 module Cn = ProceduralConversion
47 module H = ProceduralHelpers
50 sorts : (C.id, A.sort_kind) Hashtbl.t;
51 types : (C.id, A.anntypes) Hashtbl.t;
52 max_depth: int option;
60 (* helpers ******************************************************************)
62 let split2_last l1 l2 =
64 let n = pred (List.length l1) in
65 let before1, after1 = HEL.split_nth n l1 in
66 let before2, after2 = HEL.split_nth n l2 in
67 before1, before2, List.hd after1, List.hd after2
68 with Invalid_argument _ -> failwith "A2P.split2_last"
70 let string_of_head = function
72 | C.AConst _ -> "const"
73 | C.AMutInd _ -> "mutind"
74 | C.AMutConstruct _ -> "mutconstruct"
78 | C.ALambda _ -> "lambda"
79 | C.ALetIn _ -> "letin"
81 | C.ACoFix _ -> "cofix"
84 | C.AMutCase _ -> "mutcase"
86 | C.AImplicit _ -> "implict"
88 let next st = {st with depth = succ st.depth}
90 let add st entry = {st with context = entry :: st.context}
92 let push st = {st with case = 1 :: st.case}
95 {st with case = match st.case with
97 | hd :: tl -> succ hd :: tl
101 let case = String.concat "." (List.rev_map string_of_int st.case) in
102 Printf.sprintf "case %s: %s" case str
106 let msg = Printf.sprintf "Depth %u: " st.depth in
107 match st.max_depth with
109 | Some d -> if st.depth < d then true, msg else false, "DEPTH EXCEDED: "
110 with Invalid_argument _ -> failwith "A2P.test_depth"
112 let is_rewrite_right = function
113 | C.AConst (_, uri, []) ->
114 UM.eq uri HObj.Logic.eq_ind_r_URI || Obj.is_eq_ind_r_URI uri
117 let is_rewrite_left = function
118 | C.AConst (_, uri, []) ->
119 UM.eq uri HObj.Logic.eq_ind_URI || Obj.is_eq_ind_URI uri
122 let is_fwd_rewrite_right hd tl =
123 if is_rewrite_right hd then match List.nth tl 3 with
128 let is_fwd_rewrite_left hd tl =
129 if is_rewrite_left hd then match List.nth tl 3 with
134 let get_inner_types st v =
136 let id = Ut.id_of_annterm v in
137 try match Hashtbl.find st.types id with
138 | {A.annsynthesized = st; A.annexpected = Some et} -> Some (st, et)
139 | {A.annsynthesized = st; A.annexpected = None} -> Some (st, st)
140 with Not_found -> None
141 with Invalid_argument _ -> failwith "A2P.get_inner_types"
145 let id = Ut.id_of_annterm v in
146 try match Hashtbl.find st.sorts id with
149 with Not_found -> H.is_proof st.context (H.cic v)
150 with Invalid_argument _ -> failwith "P1.is_proof"
152 let get_entry st id =
153 let rec aux = function
155 | Some (C.Name name, e) :: _ when name = id -> e
160 let string_of_atomic = function
161 | C.ARel (_, _, _, s) -> s
162 | C.AVar (_, uri, _) -> H.name_of_uri uri None None
163 | C.AConst (_, uri, _) -> H.name_of_uri uri None None
164 | C.AMutInd (_, uri, i, _) -> H.name_of_uri uri (Some i) None
165 | C.AMutConstruct (_, uri, i, j, _) -> H.name_of_uri uri (Some i) (Some j)
168 let get_sub_names head l =
169 let s = string_of_atomic head in
170 if s = "" then [] else
171 let map (names, i) _ =
172 let name = Printf.sprintf "%s_%u" s i in name :: names, succ i
174 let names, _ = List.fold_left map ([], 1) l in
177 let get_type msg st t = H.get_type msg st.context (H.cic t)
180 let rec aux k n = function
181 | C.ALambda (id, s, v, t) when k > 0 ->
182 C.ALambda (id, s, v, aux (pred k) n t)
183 | C.ALambda (_, _, _, t) when n > 0 ->
184 aux 0 (pred n) (Cn.lift 1 (-1) t)
186 Printf.eprintf "A2P.clear_absts: %u %s\n" n (Pp.ppterm (H.cic t));
192 (* proof construction *******************************************************)
194 let anonymous_premise = C.Name "UNNAMED"
196 let mk_exp_args hd tl classes synth =
197 let meta id = C.AImplicit (id, None) in
199 if I.overlaps synth cl && b then v else meta ""
201 let rec aux = function
203 | hd :: tl -> if hd = meta "" then aux tl else List.rev (hd :: tl)
205 let args = T.list_rev_map2 map tl classes in
206 let args = aux args in
207 if args = [] then hd else C.AAppl ("", hd :: args)
209 let mk_convert st ?name sty ety note =
210 let e = Cn.hole "" in
211 let csty, cety = H.cic sty, H.cic ety in
214 let sname = match name with None -> "" | Some (id, _) -> id in
215 let note = Printf.sprintf "%s: %s\nSINTH: %s\nEXP: %s"
216 note sname (Pp.ppterm csty) (Pp.ppterm cety)
221 assert (Ut.is_sober st.context csty);
222 assert (Ut.is_sober st.context cety);
223 if Ut.alpha_equivalence csty cety then script else
224 let sty, ety = H.acic_bc st.context sty, H.acic_bc st.context ety in
226 | None -> T.Change (sty, ety, None, e, "") :: script
228 begin match get_entry st id with
229 | C.Def _ -> assert false (* T.ClearBody (id, "") :: script *)
231 T.Change (ety, sty, Some (id, Some id), e, "") :: script
234 let convert st ?name v =
235 match get_inner_types st v with
237 if !debug then [T.Note "NORMAL: NO INNER TYPES"] else []
238 | Some (sty, ety) -> mk_convert st ?name sty ety "NORMAL"
240 let get_intro = function
241 | C.Anonymous -> None
244 let mk_preamble st what script =
245 convert st what @ script
247 let mk_arg st = function
248 | C.ARel (_, _, i, name) as what -> convert st ~name:(name, i) what
251 let mk_fwd_rewrite st dtext name tl direction v t ity =
252 let compare premise = function
254 | Some s -> s = premise
256 assert (List.length tl = 6);
257 let what, where, predicate = List.nth tl 5, List.nth tl 3, List.nth tl 2 in
258 let e = Cn.mk_pattern 1 predicate in
259 if (Cn.does_not_occur e) then st, [] else
261 | C.ARel (_, _, i, premise) as w ->
263 let where = Some (premise, name) in
264 let script = mk_arg st what @ mk_arg st w in
265 T.Rewrite (direction, what, where, e, dtext) :: script
267 if DTI.does_not_occur (succ i) (H.cic t) || compare premise name then
268 {st with context = Cn.clear st.context premise}, script name
270 assert (Ut.is_sober st.context (H.cic ity));
271 let ity = H.acic_bc st.context ity in
272 let br1 = [T.Id ""] in
273 let br2 = List.rev (T.Apply (w, "assumption") :: script None) in
274 let text = "non-linear rewrite" in
275 st, [T.Branch ([br2; br1], ""); T.Cut (name, ity, text)]
279 let mk_rewrite st dtext where qs tl direction t =
280 assert (List.length tl = 5);
281 let predicate = List.nth tl 2 in
282 let e = Cn.mk_pattern 1 predicate in
283 let script = [T.Branch (qs, "")] in
284 if (Cn.does_not_occur e) then script else
285 T.Rewrite (direction, where, None, e, dtext) :: script
287 let rec proc_lambda st what name v t =
288 let name = match name with
289 | C.Anonymous -> H.mk_fresh_name st.context anonymous_premise
292 let entry = Some (name, C.Decl (H.cic v)) in
293 let intro = get_intro name in
294 let script = proc_proof (add st entry) t in
295 let script = T.Intros (Some 1, [intro], "") :: script in
296 mk_preamble st what script
298 and proc_letin st what name v w t =
299 let intro = get_intro name in
300 let proceed, dtext = test_depth st in
301 let script = if proceed then
302 let st, hyp, rqv = match get_inner_types st v with
304 let st, rqv = match v with
305 | C.AAppl (_, hd :: tl) when is_fwd_rewrite_right hd tl ->
306 mk_fwd_rewrite st dtext intro tl true v t ity
307 | C.AAppl (_, hd :: tl) when is_fwd_rewrite_left hd tl ->
308 mk_fwd_rewrite st dtext intro tl false v t ity
310 assert (Ut.is_sober st.context (H.cic ity));
311 let ity = H.acic_bc st.context ity in
312 let qs = [proc_proof (next st) v; [T.Id ""]] in
313 st, [T.Branch (qs, ""); T.Cut (intro, ity, dtext)]
315 st, C.Decl (H.cic ity), rqv
317 st, C.Def (H.cic v, H.cic w), [T.LetIn (intro, v, dtext)]
319 let entry = Some (name, hyp) in
320 let qt = proc_proof (next (add st entry)) t in
321 List.rev_append rqv qt
323 [T.Apply (what, dtext)]
325 mk_preamble st what script
327 and proc_rel st what =
328 let _, dtext = test_depth st in
329 let text = "assumption" in
330 let script = [T.Apply (what, dtext ^ text)] in
331 mk_preamble st what script
333 and proc_mutconstruct st what =
334 let _, dtext = test_depth st in
335 let script = [T.Apply (what, dtext)] in
336 mk_preamble st what script
338 and proc_const st what =
339 let _, dtext = test_depth st in
340 let script = [T.Apply (what, dtext)] in
341 mk_preamble st what script
343 and proc_appl st what hd tl =
344 let proceed, dtext = test_depth st in
345 let script = if proceed then
346 let ty = match get_inner_types st hd with
347 | Some (ity, _) -> H.cic ity
348 | None -> get_type "TC2" st hd
350 let classes, rc = Cl.classify st.context ty in
351 let goal_arity, goal = match get_inner_types st what with
354 snd (PEH.split_with_whd (st.context, H.cic ity)), Some (H.cic ety)
356 let parsno, argsno = List.length classes, List.length tl in
357 let decurry = parsno - argsno in
358 let diff = goal_arity - decurry in
359 if diff < 0 then failwith (Printf.sprintf "NOT TOTAL: %i %s |--- %s" diff (Pp.ppcontext st.context) (Pp.ppterm (H.cic hd)));
360 let classes = Cl.adjust st.context tl ?goal classes in
361 let rec mk_synth a n =
362 if n < 0 then a else mk_synth (I.S.add n a) (pred n)
364 let synth = mk_synth I.S.empty decurry in
365 let text = "" (* Printf.sprintf "%u %s" parsno (Cl.to_string h) *) in
366 let script = List.rev (mk_arg st hd) in
368 | Some (i, j, uri, tyno) ->
369 let classes2, tl2, _, where = split2_last classes tl in
370 let script2 = List.rev (mk_arg st where) @ script in
371 let synth2 = I.S.add 1 synth in
372 let names = H.get_ind_names uri tyno in
373 let qs = proc_bkd_proofs (next st) synth2 names classes2 tl2 in
374 if List.length qs <> List.length names then
375 let qs = proc_bkd_proofs (next st) synth [] classes tl in
376 let hd = mk_exp_args hd tl classes synth in
377 script @ [T.Apply (hd, dtext ^ text); T.Branch (qs, "")]
378 else if is_rewrite_right hd then
379 script2 @ mk_rewrite st dtext where qs tl2 false what
380 else if is_rewrite_left hd then
381 script2 @ mk_rewrite st dtext where qs tl2 true what
383 let predicate = List.nth tl2 (parsno - i) in
384 let e = Cn.mk_pattern j predicate in
385 let using = Some hd in
387 [T.Elim (where, using, e, dtext ^ text); T.Branch (qs, "")]
389 let names = get_sub_names hd tl in
390 let qs = proc_bkd_proofs (next st) synth names classes tl in
391 let hd = mk_exp_args hd tl classes synth in
392 script @ [T.Apply (hd, dtext ^ text); T.Branch (qs, "")]
394 [T.Apply (what, dtext)]
396 mk_preamble st what script
398 and proc_case st what uri tyno u v ts =
399 let proceed, dtext = test_depth st in
400 let script = if proceed then
401 let synth, classes = I.S.empty, Cl.make ts in
402 let names = H.get_ind_names uri tyno in
403 let qs = proc_bkd_proofs (next st) synth names classes ts in
404 let lpsno, _ = H.get_ind_type uri tyno in
405 let ps, sort_disp = H.get_ind_parameters st.context (H.cic v) in
406 let _, rps = HEL.split_nth lpsno ps in
407 let rpsno = List.length rps in
408 let predicate = clear_absts rpsno (1 - sort_disp) u in
409 let e = Cn.mk_pattern rpsno predicate in
411 let script = List.rev (mk_arg st v) in
412 script @ [T.Cases (v, e, dtext ^ text); T.Branch (qs, "")]
414 [T.Apply (what, dtext)]
416 mk_preamble st what script
418 and proc_other st what =
419 let _, dtext = test_depth st in
420 let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head what) in
421 let script = [T.Apply (what, dtext ^ text)] in
422 mk_preamble st what script
424 and proc_proof st t =
426 let xtypes, note = match get_inner_types st t with
427 | Some (it, et) -> Some (H.cic it, H.cic et),
428 (Printf.sprintf "\nInferred: %s\nExpected: %s"
429 (Pp.ppterm (H.cic it)) (Pp.ppterm (H.cic et)))
430 | None -> None, "\nNo types"
432 let context, _clears = Cn.get_clears st.context (H.cic t) xtypes in
433 {st with context = context}
436 | C.ALambda (_, name, w, t) as what -> proc_lambda (f st) what name w t
437 | C.ALetIn (_, name, v, w, t) as what -> proc_letin (f st) what name v w t
438 | C.ARel _ as what -> proc_rel (f st) what
439 | C.AMutConstruct _ as what -> proc_mutconstruct (f st) what
440 | C.AConst _ as what -> proc_const (f st) what
441 | C.AAppl (_, hd :: tl) as what -> proc_appl (f st) what hd tl
442 | C.AMutCase (_, uri, i, u, v, ts) as what -> proc_case (f st) what uri i u v ts
443 | what -> proc_other (f st) what
445 and proc_bkd_proofs st synth names classes ts =
447 let get_names b = ref (names, if b then push st else st) in
448 let get_note f b names =
451 | "" :: tl, st -> names := tl, st; f st
453 let note = case st hd in
455 if b then T.Note note :: f st else f st
457 let _, dtext = test_depth st in
459 if I.overlaps synth inv then None else
460 if I.S.is_empty inv then Some (get_note (fun st -> proc_proof st v)) else
461 Some (get_note (fun _ -> [T.Apply (v, dtext ^ "dependent")]))
463 let ps = T.list_map2_filter aux classes ts in
464 let b = List.length ps > 1 in
465 let names = get_names b in
466 List.rev_map (fun f -> f b names) ps
468 with Invalid_argument s -> failwith ("A2P.proc_bkd_proofs: " ^ s)
470 (* object costruction *******************************************************)
472 let th_flavours = [`Theorem; `Lemma; `Remark; `Fact]
474 let def_flavours = [`Definition]
476 let get_flavour ?flavour st v attrs =
477 let rec aux = function
479 if is_proof st v then List.hd th_flavours else List.hd def_flavours
480 | `Flavour fl :: _ -> fl
487 let proc_obj ?flavour ?(info="") st = function
488 | C.AConstant (_, _, s, Some v, t, [], attrs) ->
489 begin match get_flavour ?flavour st v attrs with
490 | flavour when List.mem flavour th_flavours ->
491 let ast = proc_proof st v in
492 let steps, nodes = T.count_steps 0 ast, T.count_nodes 0 ast in
493 let text = Printf.sprintf "%s\n%s%s: %u\n%s: %u\n%s"
494 "COMMENTS" info "Tactics" steps "Final nodes" nodes "END"
496 T.Statement (flavour, Some s, t, None, "") :: ast @ [T.Qed text]
497 | flavour when List.mem flavour def_flavours ->
498 [T.Statement (flavour, Some s, t, Some v, "")]
500 failwith "not a theorem, definition, axiom or inductive type"
502 | C.AConstant (_, _, s, None, t, [], attrs) ->
503 [T.Statement (`Axiom, Some s, t, None, "")]
504 | C.AInductiveDefinition (_, types, [], lpsno, attrs) ->
505 [T.Inductive (types, lpsno, "")]
507 failwith "not a theorem, definition, axiom or inductive type"
509 let init ~ids_to_inner_sorts ~ids_to_inner_types ?depth context =
511 sorts = ids_to_inner_sorts;
512 types = ids_to_inner_types;