1 (* Copyright (C) 2003-2005, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
30 module TC = CicTypeChecker
31 module PEH = ProofEngineHelpers
32 module E = CicEnvironment
33 module UM = UriManager
35 module PER = ProofEngineReduction
38 (* fresh name generator *****************************************************)
42 if i <= 0 then assert false else
43 let c = name.[pred i] in
44 if c >= '0' && c <= '9' then aux (pred i)
45 else Str.string_before name i, Str.string_after name i
47 let before, after = aux (String.length name) in
48 let i = if after = "" then -1 else int_of_string after in
52 C.Name (if i < 0 then s else s ^ string_of_int i)
54 let mk_fresh_name context (name, k) =
55 let rec aux i = function
57 | Some (C.Name s, _) :: entries ->
59 if m = name && j >= i then aux (succ j) entries else aux i entries
60 | _ :: entries -> aux i entries
64 let mk_fresh_name context = function
65 | C.Anonymous -> C.Anonymous
66 | C.Name s -> mk_fresh_name context (split s)
68 (* helper functions *********************************************************)
70 let rec list_map_cps g map = function
74 let g tl = g (hd :: tl) in
81 let compose f g x = f (g x)
83 let fst3 (x, _, _) = x
86 try let t, _, _, _ = Rf.type_of_aux' [] c t Un.oblivion_ugraph in t
88 Printf.eprintf "REFINE EROR: %s\n" (Printexc.to_string e);
89 Printf.eprintf "Ref: context: %s\n" (Pp.ppcontext c);
90 Printf.eprintf "Ref: term : %s\n" (Pp.ppterm t);
94 try let ty, _ = TC.type_of_aux' [] c t Un.oblivion_ugraph in ty
96 Printf.eprintf "TC: context: %s\n" (Pp.ppcontext c);
97 Printf.eprintf "TC: term : %s\n" (Pp.ppterm t);
101 match PEH.split_with_whd (c, t) with
102 | (_, hd) :: _, _ -> hd
106 match get_tail c (get_type c (get_type c t)) with
107 | C.Sort C.Prop -> true
111 let is_sort = function
115 let is_unsafe h (c, t) = true
117 let is_not_atomic = function
123 | C.MutConstruct _ -> false
126 let is_atomic t = not (is_not_atomic t)
128 let get_ind_type uri tyno =
129 match E.get_obj Un.oblivion_ugraph uri with
130 | C.InductiveDefinition (tys, _, lpsno, _), _ -> lpsno, List.nth tys tyno
133 let get_default_eliminator context uri tyno ty =
134 let _, (name, _, _, _) = get_ind_type uri tyno in
135 let ext = match get_tail context (get_type context ty) with
136 | C.Sort C.Prop -> "_ind"
137 | C.Sort C.Set -> "_rec"
138 | C.Sort (C.CProp _) -> "_rect"
139 | C.Sort (C.Type _) -> "_rect"
141 Printf.eprintf "CicPPP get_default_eliminator: %s\n" (Pp.ppterm t);
144 let buri = UM.buri_of_uri uri in
145 let uri = UM.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") in
148 let get_ind_parameters c t =
149 let ty = get_type c t in
150 let ps = match get_tail c ty with
152 | C.Appl (C.MutInd _ :: args) -> args
155 let disp = match get_tail c (get_type c ty) with
162 let cic = D.deannotate_term
164 let occurs c ~what ~where =
165 let result = ref false in
166 let equality c t1 t2 =
167 let r = Ut.alpha_equivalence t1 t2 in
168 result := !result || r; r
170 let context, what, with_what = c, [what], [C.Rel 0] in
171 let _ = PER.replace_lifting ~equality ~context ~what ~with_what ~where in
174 let name_of_uri uri tyno cno =
175 let get_ind_type tys tyno =
176 let s, _, _, cs = List.nth tys tyno in s, cs
178 match (fst (E.get_obj Un.oblivion_ugraph uri)), tyno, cno with
179 | C.Variable (s, _, _, _, _), _, _ -> s
180 | C.Constant (s, _, _, _, _), _, _ -> s
181 | C.InductiveDefinition (tys, _, _, _), Some i, None ->
182 let s, _ = get_ind_type tys i in s
183 | C.InductiveDefinition (tys, _, _, _), Some i, Some j ->
184 let _, cs = get_ind_type tys i in
185 let s, _ = List.nth cs (pred j) in s
188 (* Ensuring Barendregt convenction ******************************************)
190 let rec add_entries map c = function
193 let sname, w = map hd in
194 let entry = Some (Cic.Name sname, C.Decl w) in
195 add_entries map (entry :: c) tl
198 try match List.nth c (pred i) with
199 | Some (Cic.Name sname, _) -> sname
202 | Failure _ -> assert false
203 | Invalid_argument _ -> assert false
206 let get_fix_decl (sname, i, w, v) = sname, w in
207 let get_cofix_decl (sname, w, v) = sname, w in
208 let rec bc c = function
209 | C.LetIn (name, v, ty, t) ->
210 let name = mk_fresh_name c name in
211 let entry = Some (name, C.Def (v, ty)) in
212 let v, ty, t = bc c v, bc c ty, bc (entry :: c) t in
213 C.LetIn (name, v, ty, t)
214 | C.Lambda (name, w, t) ->
215 let name = mk_fresh_name c name in
216 let entry = Some (name, C.Decl w) in
217 let w, t = bc c w, bc (entry :: c) t in
218 C.Lambda (name, w, t)
219 | C.Prod (name, w, t) ->
220 let name = mk_fresh_name c name in
221 let entry = Some (name, C.Decl w) in
222 let w, t = bc c w, bc (entry :: c) t in
225 let vs = List.map (bc c) vs in
227 | C.MutCase (uri, tyno, u, v, ts) ->
228 let u, v, ts = bc c u, bc c v, List.map (bc c) ts in
229 C.MutCase (uri, tyno, u, v, ts)
231 let t, u = bc c t, bc c u in
233 | C.Fix (i, fixes) ->
234 let d = add_entries get_fix_decl c fixes in
235 let bc_fix (sname, i, w, v) = (sname, i, bc c w, bc d v) in
236 let fixes = List.map bc_fix fixes in
238 | C.CoFix (i, cofixes) ->
239 let d = add_entries get_cofix_decl c cofixes in
240 let bc_cofix (sname, w, v) = (sname, bc c w, bc d v) in
241 let cofixes = List.map bc_cofix cofixes in
248 let get_fix_decl (id, sname, i, w, v) = sname, cic w in
249 let get_cofix_decl (id, sname, w, v) = sname, cic w in
250 let rec bc c = function
251 | C.ALetIn (id, name, v, ty, t) ->
252 let name = mk_fresh_name c name in
253 let entry = Some (name, C.Def (cic v, cic ty)) in
254 let v, ty, t = bc c v, bc c ty, bc (entry :: c) t in
255 C.ALetIn (id, name, v, ty, t)
256 | C.ALambda (id, name, w, t) ->
257 let name = mk_fresh_name c name in
258 let entry = Some (name, C.Decl (cic w)) in
259 let w, t = bc c w, bc (entry :: c) t in
260 C.ALambda (id, name, w, t)
261 | C.AProd (id, name, w, t) ->
262 let name = mk_fresh_name c name in
263 let entry = Some (name, C.Decl (cic w)) in
264 let w, t = bc c w, bc (entry :: c) t in
265 C.AProd (id, name, w, t)
266 | C.AAppl (id, vs) ->
267 let vs = List.map (bc c) vs in
269 | C.AMutCase (id, uri, tyno, u, v, ts) ->
270 let u, v, ts = bc c u, bc c v, List.map (bc c) ts in
271 C.AMutCase (id, uri, tyno, u, v, ts)
272 | C.ACast (id, t, u) ->
273 let t, u = bc c t, bc c u in
275 | C.AFix (id, i, fixes) ->
276 let d = add_entries get_fix_decl c fixes in
277 let bc_fix (id, sname, i, w, v) = (id, sname, i, bc c w, bc d v) in
278 let fixes = List.map bc_fix fixes in
279 C.AFix (id, i, fixes)
280 | C.ACoFix (id, i, cofixes) ->
281 let d = add_entries get_cofix_decl c cofixes in
282 let bc_cofix (id, sname, w, v) = (id, sname, bc c w, bc d v) in
283 let cofixes = List.map bc_cofix cofixes in
284 C.ACoFix (id, i, cofixes)
285 | C.ARel (id1, id2, i, sname) ->
286 let sname = get_sname c i in
287 C.ARel (id1, id2, i, sname)