1 (* Copyright (C) 2003-2005, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
29 module S = CicSubstitution
30 module DTI = DoubleTypeInference
32 module PEH = ProofEngineHelpers
33 module TC = CicTypeChecker
36 module H = ProceduralHelpers
37 module Cl = ProceduralClassify
39 (* term preprocessing: optomization 1 ***************************************)
41 let defined_premise = "DEFINED"
43 let get_type msg c bo =
45 let ty, _ = TC.type_of_aux' [] c bo Un.oblivion_ugraph in
47 with e -> failwith (msg ^ ": " ^ Printexc.to_string e)
50 let name = C.Name defined_premise in
51 let ty = get_type "define" c v in
52 C.LetIn (name, v, ty, C.Rel 1)
55 let rec aux k n = function
56 | C.Lambda (s, v, t) when k > 0 ->
57 C.Lambda (s, v, aux (pred k) n t)
58 | C.Lambda (_, _, t) when n > 0 ->
59 aux 0 (pred n) (S.lift (-1) t)
61 Printf.eprintf "CicPPP clear_absts: %u %s\n" n (Pp.ppterm t);
67 let rec add_abst k = function
68 | C.Lambda (s, v, t) when k > 0 -> C.Lambda (s, v, add_abst (pred k) t)
69 | t when k > 0 -> assert false
70 | t -> C.Lambda (C.Anonymous, C.Implicit None, S.lift 1 t)
72 let rec opt1_letin g es c name v w t =
73 let name = H.mk_fresh_name c name in
74 let entry = Some (name, C.Def (v, w)) in
76 if DTI.does_not_occur 1 t then begin
77 let x = S.lift (-1) t in
78 HLog.warn "Optimizer: remove 1"; opt1_proof g true c x
81 | C.LetIn (nname, vv, ww, tt) when H.is_proof c v ->
82 let eentry = Some (nname, C.Def (vv, ww)) in
83 let ttw = get_type "opt1_letin 1" (eentry :: c) tt in
84 let x = C.LetIn (nname, vv, ww,
85 C.LetIn (name, tt, ttw, S.lift_from 2 1 t)) in
86 HLog.warn "Optimizer: swap 1"; opt1_proof g true c x
87 | v when H.is_proof c v && H.is_atomic v ->
88 let x = S.subst v t in
89 HLog.warn "Optimizer: remove 5"; opt1_proof g true c x
91 g (C.LetIn (name, v, w, t))
93 if es then opt1_term g es c v else g v
95 if es then opt1_proof g es (entry :: c) t else g t
97 and opt1_lambda g es c name w t =
98 let name = H.mk_fresh_name c name in
99 let entry = Some (name, C.Decl w) in
100 let g t = g (C.Lambda (name, w, t)) in
101 if es then opt1_proof g es (entry :: c) t else g t
103 and opt1_appl g es c t vs =
106 | C.LetIn (mame, vv, tyty, tt) ->
107 let vs = List.map (S.lift 1) vs in
108 let x = C.LetIn (mame, vv, tyty, C.Appl (tt :: vs)) in
109 HLog.warn "Optimizer: swap 2"; opt1_proof g true c x
110 | C.Lambda (name, ww, tt) ->
111 let v, vs = List.hd vs, List.tl vs in
112 let w = get_type "opt1_appl 1" c v in
113 let x = C.Appl (C.LetIn (name, v, w, tt) :: vs) in
114 HLog.warn "Optimizer: remove 2"; opt1_proof g true c x
116 let x = C.Appl (vvs @ vs) in
117 HLog.warn "Optimizer: nested application"; opt1_proof g true c x
119 let rec aux d rvs = function
121 let x = C.Appl (t :: List.rev rvs) in
122 if d then opt1_proof g true c x else g x
123 | v :: vs, (cc, bb) :: cs ->
124 if H.is_not_atomic v && I.S.mem 0 cc && bb then begin
125 HLog.warn "Optimizer: anticipate 1";
126 aux true (define c v :: rvs) (vs, cs)
128 aux d (v :: rvs) (vs, cs)
129 | _, [] -> assert false
132 let classes, conclusion = Cl.classify c (H.get_type c t) in
133 let csno, vsno = List.length classes, List.length vs in
135 let vvs, vs = HEL.split_nth csno vs in
136 let x = C.Appl (define c (C.Appl (t :: vvs)) :: vs) in
137 HLog.warn "Optimizer: anticipate 2"; opt1_proof g true c x
138 else match conclusion, List.rev vs with
139 | Some _, rv :: rvs when csno = vsno && H.is_not_atomic rv ->
140 let x = C.Appl (t :: List.rev rvs @ [define c rv]) in
141 HLog.warn "Optimizer: anticipate 3"; opt1_proof g true c x
142 | _ (* Some _, _ *) ->
145 aux false [] (vs, classes)
147 let rec aux h prev = function
148 | C.LetIn (name, vv, tyty, tt) :: vs ->
149 let t = S.lift 1 t in
150 let prev = List.map (S.lift 1) prev in
151 let vs = List.map (S.lift 1) vs in
152 let y = C.Appl (t :: List.rev prev @ tt :: vs) in
153 let ww = get_type "opt1_appl 2" c vv in
154 let x = C.LetIn (name, vv, ww, y) in
155 HLog.warn "Optimizer: swap 3"; opt1_proof g true c x
156 | v :: vs -> aux h (v :: prev) vs
161 if es then opt1_proof g es c t else g t
163 if es then H.list_map_cps g (fun h -> opt1_term h es c) vs else g vs
165 and opt1_mutcase g es c uri tyno outty arg cases =
166 let eliminator = H.get_default_eliminator c uri tyno outty in
167 let lpsno, (_, _, _, constructors) = H.get_ind_type uri tyno in
168 let ps, sort_disp = H.get_ind_parameters c arg in
169 let lps, rps = HEL.split_nth lpsno ps in
170 let rpsno = List.length rps in
171 let predicate = clear_absts rpsno (1 - sort_disp) outty in
173 I.S.mem tyno (I.get_mutinds_of_uri uri t)
175 let map2 case (_, cty) =
176 let map (h, case, k) (_, premise) =
177 if h > 0 then pred h, case, k else
178 if is_recursive premise then
179 0, add_abst k case, k + 2
183 let premises, _ = PEH.split_with_whd (c, cty) in
184 let _, lifted_case, _ =
185 List.fold_left map (lpsno, case, 1) (List.rev (List.tl premises))
189 let lifted_cases = List.map2 map2 cases constructors in
190 let args = eliminator :: lps @ predicate :: lifted_cases @ rps @ [arg] in
191 let x = H.refine c (C.Appl args) in
192 HLog.warn "Optimizer: remove 3"; opt1_proof g es c x
194 and opt1_cast g es c t w =
195 let g t = HLog.warn "Optimizer: remove 4"; g t in
196 if es then opt1_proof g es c t else g t
198 and opt1_other g es c t = g t
200 and opt1_proof g es c = function
201 | C.LetIn (name, v, ty, t) -> opt1_letin g es c name v ty t
202 | C.Lambda (name, w, t) -> opt1_lambda g es c name w t
203 | C.Appl (t :: v :: vs) -> opt1_appl g es c t (v :: vs)
204 | C.Appl [t] -> opt1_proof g es c t
205 | C.MutCase (u, n, t, v, ws) -> opt1_mutcase g es c u n t v ws
206 | C.Cast (t, w) -> opt1_cast g es c t w
207 | t -> opt1_other g es c t
209 and opt1_term g es c t =
210 if H.is_proof c t then opt1_proof g es c t else g t
212 (* term preprocessing: optomization 2 ***************************************)
214 let expanded_premise = "EXPANDED"
216 let eta_expand g tys t =
218 let name i = Printf.sprintf "%s%u" expanded_premise i in
219 let lambda i ty t = C.Lambda (C.Name (name i), ty, t) in
220 let arg i = C.Rel (succ i) in
221 let rec aux i f a = function
223 | (_, ty) :: tl -> aux (succ i) (H.compose f (lambda i ty)) (arg i :: a) tl
225 let n = List.length tys in
226 let absts, args = aux 0 H.identity [] tys in
227 let t = match S.lift n t with
228 | C.Appl ts -> C.Appl (ts @ args)
229 | t -> C.Appl (t :: args)
233 let rec opt2_letin g c name v w t =
234 let entry = Some (name, C.Def (v, w)) in
236 let g v = g (C.LetIn (name, v, w, t)) in
239 opt2_proof g (entry :: c) t
241 and opt2_lambda g c name w t =
242 let entry = Some (name, C.Decl w) in
243 let g t = g (C.Lambda (name, w, t)) in
244 opt2_proof g (entry :: c) t
246 and opt2_appl g c t vs =
248 let x = C.Appl (t :: vs) in
249 let vsno = List.length vs in
250 let _, csno = PEH.split_with_whd (c, H.get_type c t) in
252 let tys, _ = PEH.split_with_whd (c, H.get_type c x) in
253 let tys = List.rev (List.tl tys) in
254 let tys, _ = HEL.split_nth (csno - vsno) tys in
255 HLog.warn "Optimizer: eta 1"; eta_expand g tys x
258 H.list_map_cps g (fun h -> opt2_term h c) vs
260 and opt2_other g c t =
261 let tys, csno = PEH.split_with_whd (c, H.get_type c t) in
262 if csno > 0 then begin
263 let tys = List.rev (List.tl tys) in
264 HLog.warn "Optimizer: eta 2"; eta_expand g tys t
267 and opt2_proof g c = function
268 | C.LetIn (name, v, w, t) -> opt2_letin g c name v w t
269 | C.Lambda (name, w, t) -> opt2_lambda g c name w t
270 | C.Appl (t :: vs) -> opt2_appl g c t vs
271 | t -> opt2_other g c t
273 and opt2_term g c t =
274 if H.is_proof c t then opt2_proof g c t else g t
276 (* object preprocessing *****************************************************)
278 let optimize_obj = function
279 | C.Constant (name, Some bo, ty, pars, attrs) ->
280 let bo, ty = H.cic_bc [] bo, H.cic_bc [] ty in
282 Printf.eprintf "Optimized : %s\nPost Nodes: %u\n"
283 (Pp.ppterm bo) (I.count_nodes 0 bo);
284 let _ = H.get_type [] (C.Cast (bo, ty)) in
285 C.Constant (name, Some bo, ty, pars, attrs)
287 Printf.eprintf "BEGIN: %s\nPre Nodes : %u\n"
288 name (I.count_nodes 0 bo);
289 begin try opt1_term g (* (opt2_term g []) *) true [] bo
290 with e -> failwith ("PPP: " ^ Printexc.to_string e) end