1 (* Copyright (C) 2003-2005, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
26 module UM = UriManager
30 module E = CicEnvironment
31 module S = CicSubstitution
32 module DTI = DoubleTypeInference
34 module PEH = ProofEngineHelpers
35 module TC = CicTypeChecker
40 module H = ProceduralHelpers
41 module Cl = ProceduralClassify
43 (* debugging ****************************************************************)
47 (* term optimization ********************************************************)
49 let critical = ref true
56 let info st str = {st with info = st.info ^ str ^ "\n"}
58 let defined_premise = "LOCAL"
61 let name = C.Name defined_premise in
62 let ty = H.get_type "define" c v in
63 C.LetIn (name, v, ty, C.Rel 1)
66 let rec aux k n = function
67 | C.Lambda (s, v, t) when k > 0 ->
68 C.Lambda (s, v, aux (pred k) n t)
69 | C.Lambda (_, _, t) when n > 0 ->
70 aux 0 (pred n) (S.lift (-1) t)
72 Printf.eprintf "PO.clear_absts: %u %s\n" n (Pp.ppterm t);
78 let rec add_abst k = function
79 | C.Lambda (s, v, t) when k > 0 -> C.Lambda (s, v, add_abst (pred k) t)
80 | t when k > 0 -> assert false
81 | t -> C.Lambda (C.Anonymous, C.Implicit None, S.lift 1 t)
83 let rec opt_letin g st es c name v w t =
84 let name = H.mk_fresh_name c name in
85 let entry = Some (name, C.Def (v, w)) in
87 if DTI.does_not_occur 1 t then
88 let x = S.lift (-1) t in
89 opt_proof g (info st "Optimizer: remove 1") true c x
92 | C.LetIn (nname, vv, ww, tt) when H.is_proof c v ->
93 let eentry = Some (nname, C.Def (vv, ww)) in
94 let ttw = H.get_type "opt_letin 1" (eentry :: c) tt in
95 let x = C.LetIn (nname, vv, ww,
96 C.LetIn (name, tt, ttw, S.lift_from 2 1 t))
98 opt_proof g (info st "Optimizer: swap 1") true c x
99 | v when H.is_proof c v && H.is_atomic v ->
100 let x = S.subst v t in
101 opt_proof g (info st "Optimizer: remove 5") true c x
103 g st (C.LetIn (name, v, w, t))
105 if es then opt_term g st es c v else g st v
107 if es then opt_proof g st es (entry :: c) t else g st t
109 and opt_lambda g st es c name w t =
110 let name = H.mk_fresh_name c name in
111 let entry = Some (name, C.Decl w) in
112 let g st t = g st (C.Lambda (name, w, t)) in
113 if es then opt_proof g st es (entry :: c) t else g st t
115 and opt_appl g st es c t vs =
118 | C.LetIn (mame, vv, tyty, tt) ->
119 let vs = List.map (S.lift 1) vs in
120 let x = C.LetIn (mame, vv, tyty, C.Appl (tt :: vs)) in
121 opt_proof g (info st "Optimizer: swap 2") true c x
122 | C.Lambda (name, ww, tt) ->
123 let v, vs = List.hd vs, List.tl vs in
124 let w = H.get_type "opt_appl 1" c v in
125 let x = C.Appl (C.LetIn (name, v, w, tt) :: vs) in
126 opt_proof g (info st "Optimizer: remove 2") true c x
128 let x = C.Appl (vvs @ vs) in
129 opt_proof g (info st "Optimizer: nested application") true c x
132 let rec aux st d rvs = function
134 let x = C.Appl (t :: List.rev rvs) in
135 if d then opt_proof g st true c x else g st x
136 | v :: vs, (cc, bb) :: cs ->
137 if H.is_not_atomic v && I.S.mem 0 cc && bb then
138 aux (st info "Optimizer: anticipate 1") true
139 (define c v :: rvs) (vs, cs)
141 aux st d (v :: rvs) (vs, cs)
142 | _, [] -> assert false
146 let classes, conclusion = Cl.classify c (H.get_type "opt_appl 3" c t) in
147 let csno, vsno = List.length classes, List.length vs in
149 let vvs, vs = HEL.split_nth csno vs in
150 let x = C.Appl (define c (C.Appl (t :: vvs)) :: vs) in
151 opt_proof g (info st "Optimizer: anticipate 2") true c x
152 else match conclusion, List.rev vs with
153 | Some _, rv :: rvs when csno = vsno && H.is_not_atomic rv ->
154 let x = C.Appl (t :: List.rev rvs @ [define c rv]) in
155 opt_proof g (info st "Optimizer: anticipate 3";) true c x
156 | _ (* Some _, _ *) ->
157 g st (C.Appl (t :: vs))
159 aux false [] (vs, classes)
161 let rec aux h st prev = function
162 | C.LetIn (name, vv, tyty, tt) :: vs ->
163 let t = S.lift 1 t in
164 let prev = List.map (S.lift 1) prev in
165 let vs = List.map (S.lift 1) vs in
166 let y = C.Appl (t :: List.rev prev @ tt :: vs) in
167 let ww = H.get_type "opt_appl 2" c vv in
168 let x = C.LetIn (name, vv, ww, y) in
169 opt_proof g (info st "Optimizer: swap 3") true c x
170 | v :: vs -> aux h st (v :: prev) vs
175 if es then opt_proof g st es c t else g st t
177 let map h v (st, vs) =
178 let h st vv = h (st, vv :: vs) in opt_term h st es c v
180 if es then H.list_fold_right_cps g map vs (st, []) else g (st, vs)
182 and opt_mutcase_critical g st es c uri tyno outty arg cases =
183 let eliminator = H.get_default_eliminator c uri tyno outty in
184 let lpsno, (_, _, _, constructors) = H.get_ind_type uri tyno in
185 let ps, sort_disp = H.get_ind_parameters c arg in
186 let lps, rps = HEL.split_nth lpsno ps in
187 let rpsno = List.length rps in
188 let predicate = clear_absts rpsno (1 - sort_disp) outty in
190 I.S.mem tyno (I.get_mutinds_of_uri uri t)
192 let map2 case (_, cty) =
193 let map (h, case, k) (_, premise) =
194 if h > 0 then pred h, case, k else
195 if is_recursive premise then
196 0, add_abst k case, k + 2
200 let premises, _ = PEH.split_with_whd (c, cty) in
201 let _, lifted_case, _ =
202 List.fold_left map (lpsno, case, 1) (List.rev (List.tl premises))
206 let lifted_cases = List.map2 map2 cases constructors in
207 let args = eliminator :: lps @ predicate :: lifted_cases @ rps @ [arg] in
208 let x = H.refine c (C.Appl args) in
209 opt_proof g (info st "Optimizer: remove 3") es c x
211 and opt_mutcase_plain g st es c uri tyno outty arg cases =
212 let g st v ts = g st (C.MutCase (uri, tyno, outty, v, ts)) in
216 if !critical then opt_mutcase_critical g else opt_mutcase_plain g
218 and opt_cast g st es c t w =
219 let g st t = g (info st "Optimizer: remove 4") t in
220 if es then opt_proof g st es c t else g st t
222 and opt_other g st es c t = g st t
224 and opt_proof g st es c = function
225 | C.LetIn (name, v, ty, t) -> opt_letin g st es c name v ty t
226 | C.Lambda (name, w, t) -> opt_lambda g st es c name w t
227 | C.Appl (t :: v :: vs) -> opt_appl g st es c t (v :: vs)
228 | C.Appl [t] -> opt_proof g st es c t
229 | C.MutCase (u, n, t, v, ws) -> opt_mutcase g st es c u n t v ws
230 | C.Cast (t, w) -> opt_cast g st es c t w
231 | t -> opt_other g st es c t
233 and opt_term g st es c t =
234 if H.is_proof c t then opt_proof g st es c t else g st t
236 (* object optimization ******************************************************)
239 try opt_term g st true c bo
241 | E.Object_not_found uri ->
242 let msg = "optimize_obj: object not found: " ^ UM.string_of_uri uri in
245 let msg = "optimize_obj: " ^ Printexc.to_string e in
248 let optimize_obj = function
249 | C.Constant (name, Some bo, ty, pars, attrs) ->
250 let st, c = {info = ""; dummy = ()}, [] in
251 let bo, ty = H.cic_bc c bo, H.cic_bc c ty in
254 Printf.eprintf "Optimized : %s\n" (Pp.ppterm bo);
255 prerr_string "Ut.pp_term : ";
256 Ut.pp_term prerr_string [] c bo; prerr_newline ()
258 (* let _ = H.get_type "opt" [] (C.Cast (bo, ty)) in *)
259 let nodes = Printf.sprintf "Optimized nodes: %u" (I.count_nodes 0 bo) in
260 let st = info st nodes in
261 L.time_stamp ("PO: DONE " ^ name);
262 C.Constant (name, Some bo, ty, pars, attrs), st.info
264 L.time_stamp ("PO: OPTIMIZING " ^ name);
265 if !debug then Printf.eprintf "BEGIN: %s\n" name;
266 let nodes = Printf.sprintf "Initial nodes: %u" (I.count_nodes 0 bo) in
267 wrap g (info st nodes) c bo
270 let optimize_term c bo =
271 let st = {info = ""; dummy = ()} in
272 let bo = H.cic_bc c bo in
273 let g st bo = bo, st.info in