1 (* Copyright (C) 2000, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
28 exception ReferenceToNonVariable;;
30 let prerr_endline _ = ();;
33 let rec fix_lambdas_wrt_type ty te =
35 let module S = CicSubstitution in
36 (* prerr_endline ("entering fix_lambdas: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm te); *)
39 (match CicReduction.whd [] te with
41 C.Lambda (n,s,fix_lambdas_wrt_type ty' te')
45 C.Prod (_,s,ty) -> s::(get_sources ty)
47 let sources = get_sources ty in
48 let no_sources = List.length sources in
49 let rec mk_rels n shift =
51 else (C.Rel (n + shift))::(mk_rels (n - 1) shift) in
52 let t' = S.lift no_sources t in
57 (C.Name "w",t',C.Appl ((C.Rel 1)::(mk_rels no_sources 1)))
59 C.Appl (t'::(mk_rels no_sources 0)) in
61 (fun source t -> C.Lambda (C.Name "y",source,t))
66 let rec fix_lambdas_wrt_type ty te =
68 let module S = CicSubstitution in
69 (* prerr_endline ("entering fix_lambdas: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm te); *)
71 C.Prod (_,_,ty'), C.Lambda (n,s,te') ->
72 C.Lambda (n,s,fix_lambdas_wrt_type ty' te')
73 | C.Prod (_,s,ty'), t ->
76 C.Prod (_,s,ty) -> s::(get_sources ty)
78 let sources = get_sources ty in
79 let no_sources = List.length sources in
80 let rec mk_rels n shift =
82 else (C.Rel (n + shift))::(mk_rels (n - 1) shift) in
83 let t' = S.lift no_sources t in
87 C.LetIn (C.Name "w",t',assert false,
88 C.Appl ((C.Rel 1)::(mk_rels no_sources 1)))
89 | _ -> C.Appl (t'::(mk_rels no_sources 0)) in
91 (fun source t -> C.Lambda (C.Name "y",CicReduction.whd [] source,t)) sources t2
96 let rec fix_lambdas_wrt_type ty te =
98 let module S = CicSubstitution in
99 (* prerr_endline ("entering fix_lambdas: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm te); *)
101 C.Prod (_,_,ty'), C.Lambda (n,s,te') ->
102 C.Lambda (n,s,fix_lambdas_wrt_type ty' te')
103 | C.Prod (_,s,ty'), ((C.Appl (C.Const _ ::_)) as t) ->
104 (* const have a fixed arity *)
105 (* prerr_endline ("******** fl - eta expansion 0: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm te); *)
106 let t' = S.lift 1 t in
107 C.Lambda (C.Name "x",s,
109 (C.Name "H", fix_lambdas_wrt_type ty' t',
110 C.Appl [C.Rel 1;C.Rel 2]))
111 | C.Prod (_,s,ty'), C.Appl l ->
112 (* prerr_endline ("******** fl - eta expansion 1: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm te); *)
113 let l' = List.map (S.lift 1) l in
114 C.Lambda (C.Name "x",s,
115 fix_lambdas_wrt_type ty' (C.Appl (l'@[C.Rel 1])))
116 | C.Prod (_,s,ty'), _ ->
117 (* prerr_endline ("******** fl - eta expansion 2: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm te); *)
119 let te' = S.lift 1 te in
120 C.Lambda (C.Name "x",s,
121 fix_lambdas_wrt_type ty' (C.Appl [te';C.Rel 1]))
125 let fix_according_to_type ty hd tl =
126 let module C = Cic in
127 let module S = CicSubstitution in
128 let rec count_prods =
130 C.Prod (_,_,t) -> 1 + (count_prods t)
132 let expected_arity = count_prods ty in
133 let rec aux n ty tl res =
144 | [a] -> C.Appl (a::tl)
146 (* prerr_endline ("******* too many args: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm (C.Appl res)); *)
151 C.Appl (C.Rel 1::(List.map (S.lift 1) tl))))
153 let name,source,target =
155 C.Prod (C.Name _ as n,s,t) -> n,s,t
156 | C.Prod (C.Anonymous, s,t) -> C.Name "z",s,t
157 | _ -> (* prods number may only increase for substitution *)
161 (* prerr_endline ("******* too few args: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm (C.Appl res)); *)
162 let res' = List.map (S.lift 1) res in
164 (name, source, aux (n-1) target [] (res'@[C.Rel 1]))
166 let hd' = fix_lambdas_wrt_type source hd in
167 (* (prerr_endline ("++++++prima :" ^(CicPp.ppterm hd));
168 prerr_endline ("++++++dopo :" ^(CicPp.ppterm hd'))); *)
169 aux (n-1) (S.subst hd' target) tl' (res@[hd']) in
170 aux expected_arity ty tl [hd]
173 let eta_fix metasenv context t =
174 let rec eta_fix' context t =
175 (* prerr_endline ("entering aux with: term=" ^ CicPp.ppterm t);
177 let module C = Cic in
178 let module S = CicSubstitution in
181 | C.Var (uri,exp_named_subst) ->
182 let exp_named_subst' = fix_exp_named_subst context exp_named_subst in
183 C.Var (uri,exp_named_subst')
185 let (_,canonical_context,_) = CicUtil.lookup_meta n metasenv in
191 | _, Some t -> Some (eta_fix' context t)
192 | Some _, None -> assert false (* due to typing rules *))
196 | C.Sort s -> C.Sort s
197 | C.Implicit _ as t -> t
198 | C.Cast (v,t) -> C.Cast (eta_fix' context v, eta_fix' context t)
201 (n, eta_fix' context s, eta_fix' ((Some (n,(C.Decl s)))::context) t)
202 | C.Lambda (n,s,t) ->
204 (n, eta_fix' context s, eta_fix' ((Some (n,(C.Decl s)))::context) t)
205 | C.LetIn (n,s,ty,t) ->
207 (n,eta_fix' context s,eta_fix' context ty,
208 eta_fix' ((Some (n,(C.Def (s,ty))))::context) t)
209 | C.Appl [] -> assert false
211 let tl' = List.map (eta_fix' context) tl in
213 CicTypeChecker.type_of_aux' metasenv context he
214 CicUniv.oblivion_ugraph
216 fix_according_to_type ty (eta_fix' context he) tl'
218 C.Const(uri,exp_named_subst)::l'' ->
220 (match CicEnvironment.get_obj uri with
221 C.Constant (_,_,ty,_) -> ty
222 | C.Variable _ -> raise ReferenceToVariable
223 | C.CurrentProof (_,_,_,_,params) -> raise ReferenceToCurrentProof
224 | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
226 fix_according_to_type
227 constant_type (C.Const(uri,exp_named_subst)) l''
229 | C.Const (uri,exp_named_subst) ->
230 let exp_named_subst' = fix_exp_named_subst context exp_named_subst in
231 C.Const (uri,exp_named_subst')
232 | C.MutInd (uri,tyno,exp_named_subst) ->
233 let exp_named_subst' = fix_exp_named_subst context exp_named_subst in
234 C.MutInd (uri, tyno, exp_named_subst')
235 | C.MutConstruct (uri,tyno,consno,exp_named_subst) ->
236 let exp_named_subst' = fix_exp_named_subst context exp_named_subst in
237 C.MutConstruct (uri, tyno, consno, exp_named_subst')
238 | C.MutCase (uri, tyno, outty, term, patterns) ->
239 let outty' = eta_fix' context outty in
240 let term' = eta_fix' context term in
241 let patterns' = List.map (eta_fix' context) patterns in
242 let inductive_types,noparams =
243 let o,_ = CicEnvironment.get_obj CicUniv.oblivion_ugraph uri in
245 Cic.Constant _ -> assert false
246 | Cic.Variable _ -> assert false
247 | Cic.CurrentProof _ -> assert false
248 | Cic.InductiveDefinition (l,_,n,_) -> l,n
250 let (_,_,_,constructors) = List.nth inductive_types tyno in
251 let constructor_types =
257 Cic.Prod (_,_,t') -> clean_up (S.subst a t') tl
258 | _ -> assert false) in
260 List.map (fun (_,t) -> t) constructors
263 CicTypeChecker.type_of_aux' metasenv context term
264 CicUniv.oblivion_ugraph
266 (match term_type with
267 C.Appl (hd::params) ->
268 let rec first_n n l =
272 a::tl -> a::(first_n (n-1) tl)
273 | _ -> assert false) in
276 clean_up t (first_n noparams params)) constructors
277 | _ -> prerr_endline ("QUA"); assert false) in
279 List.map2 fix_lambdas_wrt_type
280 constructor_types patterns' in
281 C.MutCase (uri, tyno, outty',term',patterns2)
282 | C.Fix (funno, funs) ->
284 List.map (fun (n,_,ty,_) -> Some (C.Name n,(Cic.Decl ty))) funs in
287 (fun (name, no, ty, bo) ->
288 (name, no, eta_fix' context ty, eta_fix' (fun_types@context) bo))
290 | C.CoFix (funno, funs) ->
292 List.map (fun (n,ty,_) -> Some (C.Name n,(Cic.Decl ty))) funs in
295 (fun (name, ty, bo) ->
296 (name, eta_fix' context ty, eta_fix' (fun_types@context) bo)) funs)
297 and fix_exp_named_subst context exp_named_subst =
300 (fun newsubst (uri,t) ->
301 let t' = eta_fix' context t in
303 let o,_ = CicEnvironment.get_obj CicUniv.oblivion_ugraph uri in
305 Cic.Variable (_,_,ty,_,_) ->
306 CicSubstitution.subst_vars newsubst ty
307 | _ -> raise ReferenceToNonVariable
309 let t'' = fix_according_to_type ty t' [] in
311 ) [] exp_named_subst)