1 (* Copyright (C) 2000, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
28 (* TODO unify exceptions *)
30 exception WrongUriToInductiveDefinition;;
31 exception Impossible of int;;
32 exception ReferenceToConstant;;
33 exception ReferenceToVariable;;
34 exception ReferenceToCurrentProof;;
35 exception ReferenceToInductiveDefinition;;
39 let debug_print s = if debug then prerr_endline (Lazy.force s)
43 let rec debug_aux t i =
45 let module U = UriManager in
46 CicPp.ppobj (C.Variable ("DEBUG", None, t, [], [])) ^ "\n" ^ i
49 debug_print (lazy (s ^ "\n" ^ List.fold_right debug_aux (t::env) ""))
52 module type Strategy =
57 type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
59 reduce: (config -> config) ->
60 unwind: (config -> Cic.term) ->
63 reduce: (config -> config) ->
64 unwind: (config -> Cic.term) ->
66 val from_stack : stack_term -> config
67 val from_stack_list_for_unwind :
68 unwind: (config -> Cic.term) ->
69 stack_term list -> Cic.term list
70 val from_env : env_term -> config
71 val from_env_for_unwind :
72 unwind: (config -> Cic.term) ->
74 val from_ens : ens_term -> config
75 val from_ens_for_unwind :
76 unwind: (config -> Cic.term) ->
79 reduce: (config -> config) ->
80 unwind: (config -> Cic.term) ->
81 stack_term -> env_term
83 reduce: (config -> config) ->
84 unwind: (config -> Cic.term) ->
85 int -> env_term list -> ens_term Cic.explicit_named_substitution ->
87 val compute_to_stack :
88 reduce: (config -> config) ->
89 unwind: (config -> Cic.term) ->
94 module CallByValueByNameForUnwind =
96 type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
97 and stack_term = config
98 and env_term = config * config (* cbv, cbn *)
99 and ens_term = config * config (* cbv, cbn *)
103 let from_stack config = config
104 let from_stack_list_for_unwind ~unwind l = List.map unwind l
105 let from_env (c,_) = c
106 let from_ens (c,_) = c
107 let from_env_for_unwind ~unwind (_,c) = unwind c
108 let from_ens_for_unwind ~unwind (_,c) = unwind c
109 let stack_to_env ~reduce ~unwind config = reduce config, (0,[],[],unwind config,[])
110 let compute_to_env ~reduce ~unwind k e ens t = (k,e,ens,t,[]), (k,e,ens,t,[])
111 let compute_to_stack ~reduce ~unwind config = config
115 module CallByValueByNameForUnwind' =
117 type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
118 and stack_term = config lazy_t * Cic.term lazy_t (* cbv, cbn *)
119 and env_term = config lazy_t * Cic.term lazy_t (* cbv, cbn *)
120 and ens_term = config lazy_t * Cic.term lazy_t (* cbv, cbn *)
122 let to_env ~reduce ~unwind c = lazy (reduce c),lazy (unwind c)
123 let to_ens ~reduce ~unwind c = lazy (reduce c),lazy (unwind c)
124 let from_stack (c,_) = Lazy.force c
125 let from_stack_list_for_unwind ~unwind l = List.map (function (_,c) -> Lazy.force c) l
126 let from_env (c,_) = Lazy.force c
127 let from_ens (c,_) = Lazy.force c
128 let from_env_for_unwind ~unwind (_,c) = Lazy.force c
129 let from_ens_for_unwind ~unwind (_,c) = Lazy.force c
130 let stack_to_env ~reduce ~unwind config = config
131 let compute_to_env ~reduce ~unwind k e ens t =
132 lazy (reduce (k,e,ens,t,[])), lazy (unwind (k,e,ens,t,[]))
133 let compute_to_stack ~reduce ~unwind config = lazy (reduce config), lazy (unwind config)
139 module CallByNameStrategy =
141 type stack_term = Cic.term
142 type env_term = Cic.term
143 type ens_term = Cic.term
144 type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
147 let from_stack ~unwind v = v
148 let from_stack_list ~unwind l = l
151 let from_env_for_unwind ~unwind v = v
152 let from_ens_for_unwind ~unwind v = v
153 let stack_to_env ~reduce ~unwind v = v
154 let compute_to_stack ~reduce ~unwind k e ens t = unwind k e ens t
155 let compute_to_env ~reduce ~unwind k e ens t = unwind k e ens t
160 module CallByNameStrategy =
162 type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
163 and stack_term = config
164 and env_term = config
165 and ens_term = config
169 let from_stack config = config
170 let from_stack_list_for_unwind ~unwind l = List.map unwind l
173 let from_env_for_unwind ~unwind c = unwind c
174 let from_ens_for_unwind ~unwind c = unwind c
175 let stack_to_env ~reduce ~unwind config = 0,[],[],unwind config,[]
176 let compute_to_env ~reduce ~unwind k e ens t = k,e,ens,t,[]
177 let compute_to_stack ~reduce ~unwind config = config
181 module CallByValueStrategy =
183 type stack_term = Cic.term
184 type env_term = Cic.term
185 type ens_term = Cic.term
186 type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
189 let from_stack ~unwind v = v
190 let from_stack_list ~unwind l = l
193 let from_env_for_unwind ~unwind v = v
194 let from_ens_for_unwind ~unwind v = v
195 let stack_to_env ~reduce ~unwind v = v
196 let compute_to_stack ~reduce ~unwind k e ens t = reduce (k,e,ens,t,[])
197 let compute_to_env ~reduce ~unwind k e ens t = reduce (k,e,ens,t,[])
201 module CallByValueStrategyByNameOnConstants =
203 type stack_term = Cic.term
204 type env_term = Cic.term
205 type ens_term = Cic.term
206 type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
209 let from_stack ~unwind v = v
210 let from_stack_list ~unwind l = l
213 let from_env_for_unwind ~unwind v = v
214 let from_ens_for_unwind ~unwind v = v
215 let stack_to_env ~reduce ~unwind v = v
216 let compute_to_stack ~reduce ~unwind k e ens =
218 Cic.Const _ as t -> unwind k e ens t
219 | t -> reduce (k,e,ens,t,[])
220 let compute_to_env ~reduce ~unwind k e ens =
222 Cic.Const _ as t -> unwind k e ens t
223 | t -> reduce (k,e,ens,t,[])
227 module LazyCallByValueStrategy =
229 type stack_term = Cic.term lazy_t
230 type env_term = Cic.term lazy_t
231 type ens_term = Cic.term lazy_t
232 type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
233 let to_env v = lazy v
234 let to_ens v = lazy v
235 let from_stack ~unwind v = Lazy.force v
236 let from_stack_list ~unwind l = List.map (from_stack ~unwind) l
237 let from_env v = Lazy.force v
238 let from_ens v = Lazy.force v
239 let from_env_for_unwind ~unwind v = Lazy.force v
240 let from_ens_for_unwind ~unwind v = Lazy.force v
241 let stack_to_env ~reduce ~unwind v = v
242 let compute_to_stack ~reduce ~unwind k e ens t = lazy (reduce (k,e,ens,t,[]))
243 let compute_to_env ~reduce ~unwind k e ens t = lazy (reduce (k,e,ens,t,[]))
247 module LazyCallByValueStrategyByNameOnConstants =
249 type stack_term = Cic.term lazy_t
250 type env_term = Cic.term lazy_t
251 type ens_term = Cic.term lazy_t
252 type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
253 let to_env v = lazy v
254 let to_ens v = lazy v
255 let from_stack ~unwind v = Lazy.force v
256 let from_stack_list ~unwind l = List.map (from_stack ~unwind) l
257 let from_env v = Lazy.force v
258 let from_ens v = Lazy.force v
259 let from_env_for_unwind ~unwind v = Lazy.force v
260 let from_ens_for_unwind ~unwind v = Lazy.force v
261 let stack_to_env ~reduce ~unwind v = v
262 let compute_to_stack ~reduce ~unwind k e ens t =
265 Cic.Const _ as t -> unwind k e ens t
266 | t -> reduce (k,e,ens,t,[]))
267 let compute_to_env ~reduce ~unwind k e ens t =
270 Cic.Const _ as t -> unwind k e ens t
271 | t -> reduce (k,e,ens,t,[]))
275 module LazyCallByNameStrategy =
277 type stack_term = Cic.term lazy_t
278 type env_term = Cic.term lazy_t
279 type ens_term = Cic.term lazy_t
280 type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
281 let to_env v = lazy v
282 let to_ens v = lazy v
283 let from_stack ~unwind v = Lazy.force v
284 let from_stack_list ~unwind l = List.map (from_stack ~unwind) l
285 let from_env v = Lazy.force v
286 let from_ens v = Lazy.force v
287 let from_env_for_unwind ~unwind v = Lazy.force v
288 let from_ens_for_unwind ~unwind v = Lazy.force v
289 let stack_to_env ~reduce ~unwind v = v
290 let compute_to_stack ~reduce ~unwind k e ens t = lazy (unwind k e ens t)
291 let compute_to_env ~reduce ~unwind k e ens t = lazy (unwind k e ens t)
296 LazyCallByValueByNameOnConstantsWhenFromStack_ByNameStrategyWhenFromEnvOrEns
299 type stack_term = reduce:bool -> Cic.term
300 type env_term = reduce:bool -> Cic.term
301 type ens_term = reduce:bool -> Cic.term
302 type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
304 let value = lazy v in
305 fun ~reduce -> Lazy.force value
307 let value = lazy v in
308 fun ~reduce -> Lazy.force value
309 let from_stack ~unwind v = (v ~reduce:false)
310 let from_stack_list ~unwind l = List.map (from_stack ~unwind) l
311 let from_env v = (v ~reduce:true)
312 let from_ens v = (v ~reduce:true)
313 let from_env_for_unwind ~unwind v = (v ~reduce:true)
314 let from_ens_for_unwind ~unwind v = (v ~reduce:true)
315 let stack_to_env ~reduce ~unwind v = v
316 let compute_to_stack ~reduce ~unwind k e ens t =
320 Cic.Const _ as t -> unwind k e ens t
321 | t -> reduce (k,e,ens,t,[])
324 lazy (unwind k e ens t)
327 if reduce then Lazy.force svalue else Lazy.force lvalue
328 let compute_to_env ~reduce ~unwind k e ens t =
332 Cic.Const _ as t -> unwind k e ens t
333 | t -> reduce (k,e,ens,t,[])
336 lazy (unwind k e ens t)
339 if reduce then Lazy.force svalue else Lazy.force lvalue
343 module ClosuresOnStackByValueFromEnvOrEnsStrategy =
345 type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
346 and stack_term = config
347 and env_term = config
348 and ens_term = config
350 let to_env config = config
351 let to_ens config = config
352 let from_stack config = config
353 let from_stack_list_for_unwind ~unwind l = List.map unwind l
356 let from_env_for_unwind ~unwind config = unwind config
357 let from_ens_for_unwind ~unwind config = unwind config
358 let stack_to_env ~reduce ~unwind config = reduce config
359 let compute_to_env ~reduce ~unwind k e ens t = (k,e,ens,t,[])
360 let compute_to_stack ~reduce ~unwind config = config
364 module ClosuresOnStackByValueFromEnvOrEnsByNameOnConstantsStrategy =
367 int * Cic.term list * Cic.term Cic.explicit_named_substitution * Cic.term
368 type env_term = Cic.term
369 type ens_term = Cic.term
370 type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list
373 let from_stack ~unwind (k,e,ens,t) = unwind k e ens t
374 let from_stack_list ~unwind l = List.map (from_stack ~unwind) l
377 let from_env_for_unwind ~unwind v = v
378 let from_ens_for_unwind ~unwind v = v
379 let stack_to_env ~reduce ~unwind (k,e,ens,t) =
381 Cic.Const _ as t -> unwind k e ens t
382 | t -> reduce (k,e,ens,t,[])
383 let compute_to_env ~reduce ~unwind k e ens t =
385 let compute_to_stack ~reduce ~unwind k e ens t = (k,e,ens,t)
389 module Reduction(RS : Strategy) =
391 type env = RS.env_term list
392 type ens = RS.ens_term Cic.explicit_named_substitution
393 type stack = RS.stack_term list
394 type config = int * env * ens * Cic.term * stack
396 (* k is the length of the environment e *)
397 (* m is the current depth inside the term *)
398 let rec unwind' m k e ens t =
399 let module C = Cic in
400 let module S = CicSubstitution in
401 if k = 0 && ens = [] then
404 let rec unwind_aux m =
407 if n <= m then t else
410 Some (RS.from_env_for_unwind ~unwind (List.nth e (n-m-1)))
411 with Failure _ -> None
415 if m = 0 then t' else S.lift m t'
416 | None -> C.Rel (n-k)
418 | C.Var (uri,exp_named_subst) ->
420 debug_print (lazy ("%%%%%UWVAR " ^ String.concat " ; " (List.map (function (uri,t) -> UriManager.string_of_uri uri ^ " := " ^ CicPp.ppterm t) ens))) ;
422 if List.exists (function (uri',_) -> UriManager.eq uri' uri) ens then
423 CicSubstitution.lift m (RS.from_ens_for_unwind ~unwind (List.assq uri ens))
427 CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri
430 C.Constant _ -> raise ReferenceToConstant
431 | C.Variable (_,_,_,params,_) -> params
432 | C.CurrentProof _ -> raise ReferenceToCurrentProof
433 | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
436 let exp_named_subst' =
437 substaux_in_exp_named_subst params exp_named_subst m
439 C.Var (uri,exp_named_subst')
445 | Some t -> Some (unwind_aux m t)
450 | C.Implicit _ as t -> t
451 | C.Cast (te,ty) -> C.Cast (unwind_aux m te, unwind_aux m ty) (*CSC ???*)
452 | C.Prod (n,s,t) -> C.Prod (n, unwind_aux m s, unwind_aux (m + 1) t)
453 | C.Lambda (n,s,t) -> C.Lambda (n, unwind_aux m s, unwind_aux (m + 1) t)
454 | C.LetIn (n,s,ty,t) ->
455 C.LetIn (n, unwind_aux m s, unwind_aux m ty, unwind_aux (m + 1) t)
456 | C.Appl l -> C.Appl (List.map (unwind_aux m) l)
457 | C.Const (uri,exp_named_subst) ->
460 CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri
463 C.Constant (_,_,_,params,_) -> params
464 | C.Variable _ -> raise ReferenceToVariable
465 | C.CurrentProof (_,_,_,_,params,_) -> params
466 | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
469 let exp_named_subst' =
470 substaux_in_exp_named_subst params exp_named_subst m
472 C.Const (uri,exp_named_subst')
473 | C.MutInd (uri,i,exp_named_subst) ->
476 CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri
479 C.Constant _ -> raise ReferenceToConstant
480 | C.Variable _ -> raise ReferenceToVariable
481 | C.CurrentProof _ -> raise ReferenceToCurrentProof
482 | C.InductiveDefinition (_,params,_,_) -> params
485 let exp_named_subst' =
486 substaux_in_exp_named_subst params exp_named_subst m
488 C.MutInd (uri,i,exp_named_subst')
489 | C.MutConstruct (uri,i,j,exp_named_subst) ->
492 CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri
495 C.Constant _ -> raise ReferenceToConstant
496 | C.Variable _ -> raise ReferenceToVariable
497 | C.CurrentProof _ -> raise ReferenceToCurrentProof
498 | C.InductiveDefinition (_,params,_,_) -> params
501 let exp_named_subst' =
502 substaux_in_exp_named_subst params exp_named_subst m
504 C.MutConstruct (uri,i,j,exp_named_subst')
505 | C.MutCase (sp,i,outt,t,pl) ->
506 C.MutCase (sp,i,unwind_aux m outt, unwind_aux m t,
507 List.map (unwind_aux m) pl)
509 let len = List.length fl in
512 (fun (name,i,ty,bo) ->
513 (name, i, unwind_aux m ty, unwind_aux (m+len) bo))
516 C.Fix (i, substitutedfl)
518 let len = List.length fl in
521 (fun (name,ty,bo) -> (name, unwind_aux m ty, unwind_aux (m+len) bo))
524 C.CoFix (i, substitutedfl)
525 and substaux_in_exp_named_subst params exp_named_subst' m =
526 (*CSC: Idea di Andrea di ordinare compatibilmente con l'ordine dei params
528 List.map (function (uri,t) -> uri, unwind_aux m t) exp_named_subst' @
529 (*CSC: qui liftiamo tutti gli ens anche se magari me ne servono la meta'!!! *)
530 List.map (function (uri,t) -> uri, CicSubstitution.lift m t) ens
532 let rec filter_and_lift =
536 let r = filter_and_lift tl in
538 (uri,(List.assq uri ens'))::r
543 filter_and_lift params
546 (*CSC: invece di concatenare sarebbe meglio rispettare l'ordine dei params *)
547 (*CSC: e' vero???? una veloce prova non sembra confermare la teoria *)
549 (*CSC: codice copiato e modificato dalla cicSubstitution.subst_vars *)
550 (*CSC: codice altamente inefficiente *)
551 let rec filter_and_lift already_instantiated =
556 (function (uri',_)-> not (UriManager.eq uri uri')) exp_named_subst'
558 not (List.mem uri already_instantiated)
562 (uri,CicSubstitution.lift m (RS.from_ens_for_unwind ~unwind t)) ::
563 (filter_and_lift (uri::already_instantiated) tl)
564 | _::tl -> filter_and_lift already_instantiated tl
567 debug_print (lazy ("---- SKIPPO " ^ UriManager.string_of_uri uri)) ;
568 if List.for_all (function (uri',_) -> not (UriManager.eq uri uri'))
569 exp_named_subst' then debug_print (lazy "---- OK1") ;
570 debug_print (lazy ("++++ uri " ^ UriManager.string_of_uri uri ^ " not in " ^ String.concat " ; " (List.map UriManager.string_of_uri params))) ;
571 if List.mem uri params then debug_print (lazy "---- OK2") ;
575 List.map (function (uri,t) -> uri, unwind_aux m t) exp_named_subst' @
576 (filter_and_lift [] (List.rev ens))
580 and unwind (k,e,ens,t,s) =
581 let t' = unwind' 0 k e ens t in
582 if s = [] then t' else Cic.Appl (t'::(RS.from_stack_list_for_unwind ~unwind s))
587 let profiler_unwind = HExtlib.profile ~enable:profile "are_convertible.unwind" in
589 profiler_unwind.HExtlib.profile (unwind k e ens) t
593 let reduce ~delta ?(subst = []) context : config -> config =
594 let module C = Cic in
595 let module S = CicSubstitution in
598 (k, e, _, C.Rel n, s) as config ->
600 if not delta then None
603 Some (RS.from_env (List.nth e (n-1)))
608 match List.nth context (n - 1 - k) with
610 | Some (_,C.Decl _) -> None
611 | Some (_,C.Def (x,_)) -> Some (0,[],[],S.lift (n - k) x,[])
617 Some (k',e',ens',t',s') -> reduce (k',e',ens',t',s'@s)
619 | (k, e, ens, C.Var (uri,exp_named_subst), s) as config ->
620 if List.exists (function (uri',_) -> UriManager.eq uri' uri) ens then
621 let (k',e',ens',t',s') = RS.from_ens (List.assq uri ens) in
622 reduce (k',e',ens',t',s'@s)
625 CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri
628 C.Constant _ -> raise ReferenceToConstant
629 | C.CurrentProof _ -> raise ReferenceToCurrentProof
630 | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
631 | C.Variable (_,None,_,_,_) -> config
632 | C.Variable (_,Some body,_,_,_) ->
633 let ens' = push_exp_named_subst k e ens exp_named_subst in
634 reduce (0, [], ens', body, s)
636 | (k, e, ens, C.Meta (n,l), s) as config ->
638 let (_, term,_) = CicUtil.lookup_subst n subst in
639 reduce (k, e, ens,CicSubstitution.subst_meta l term,s)
640 with CicUtil.Subst_not_found _ -> config)
641 | (_, _, _, C.Sort _, _)
642 | (_, _, _, C.Implicit _, _) as config -> config
643 | (k, e, ens, C.Cast (te,ty), s) ->
644 reduce (k, e, ens, te, s)
645 | (_, _, _, C.Prod _, _) as config -> config
646 | (_, _, _, C.Lambda _, []) as config -> config
647 | (k, e, ens, C.Lambda (_,_,t), p::s) ->
648 reduce (k+1, (RS.stack_to_env ~reduce ~unwind p)::e, ens, t,s)
649 | (k, e, ens, C.LetIn (_,m,_,t), s) ->
650 let m' = RS.compute_to_env ~reduce ~unwind k e ens m in
651 reduce (k+1, m'::e, ens, t, s)
652 | (_, _, _, C.Appl [], _) -> assert false
653 | (k, e, ens, C.Appl (he::tl), s) ->
656 (function t -> RS.compute_to_stack ~reduce ~unwind (k,e,ens,t,[])) tl
658 reduce (k, e, ens, he, (List.append tl') s)
659 | (_, _, _, C.Const _, _) as config when delta=false-> config
660 | (k, e, ens, C.Const (uri,exp_named_subst), s) as config ->
662 CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri
665 C.Constant (_,Some body,_,_,_) ->
666 let ens' = push_exp_named_subst k e ens exp_named_subst in
667 (* constants are closed *)
668 reduce (0, [], ens', body, s)
669 | C.Constant (_,None,_,_,_) -> config
670 | C.Variable _ -> raise ReferenceToVariable
671 | C.CurrentProof (_,_,body,_,_,_) ->
672 let ens' = push_exp_named_subst k e ens exp_named_subst in
673 (* constants are closed *)
674 reduce (0, [], ens', body, s)
675 | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
677 | (_, _, _, C.MutInd _, _)
678 | (_, _, _, C.MutConstruct _, _) as config -> config
679 | (k, e, ens, C.MutCase (mutind,i,outty,term,pl),s) as config ->
682 (k, e, ens, C.CoFix (i,fl), s) ->
683 let (_,_,body) = List.nth fl i in
685 let counter = ref (List.length fl) in
687 (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl)))
691 reduce (k,e,ens,body',s)
694 (match decofix (reduce (k,e,ens,term,[])) with
695 (k', e', ens', C.MutConstruct (_,_,j,_), []) ->
696 reduce (k, e, ens, (List.nth pl (j-1)), s)
697 | (k', e', ens', C.MutConstruct (_,_,j,_), s') ->
700 CicEnvironment.get_cooked_obj CicUniv.empty_ugraph mutind
703 C.InductiveDefinition (_,_,r,_) -> r
704 | _ -> raise WrongUriToInductiveDefinition
707 let num_to_eat = r in
711 | (n,he::s) when n > 0 -> eat_first (n - 1, s)
712 | _ -> raise (Impossible 5)
714 eat_first (num_to_eat,s')
716 reduce (k, e, ens, (List.nth pl (j-1)), ts@s)
717 | (_, _, _, C.Cast _, _)
718 | (_, _, _, C.Implicit _, _) ->
719 raise (Impossible 2) (* we don't trust our whd ;-) *)
721 (*CSC: here I am unwinding the configuration and for sure I
722 will do it twice; to avoid this unwinding I should push the
723 "match [] with _" continuation on the stack;
724 another possibility is to just return the original configuration,
725 partially undoing the weak-head computation *)
726 (*this code is uncorrect since term' lives in e' <> e
727 let term' = unwind config' in
728 (k, e, ens, C.MutCase (mutind,i,outty,term',pl),s)
731 | (k, e, ens, C.Fix (i,fl), s) as config ->
732 let (_,recindex,_,body) = List.nth fl i in
735 Some (RS.from_stack (List.nth s recindex))
741 (match reduce recparam with
742 (_,_,_,C.MutConstruct _,_) as config ->
743 let leng = List.length fl in
745 let counter = ref 0 in
746 let rec build_env e' =
747 if !counter = leng then e'
751 ((RS.to_env ~reduce ~unwind (k,e,ens,C.Fix (!counter -1, fl),[]))::e'))
755 let rec replace i s t =
758 | n,he::tl -> he::(replace (n - 1) tl t)
759 | _,_ -> assert false in
761 replace recindex s (RS.compute_to_stack ~reduce ~unwind config)
763 reduce (k+leng, new_env, ens, body, new_s)
767 | (_,_,_,C.CoFix _,_) as config -> config
768 and push_exp_named_subst k e ens =
772 push_exp_named_subst k e ((uri,RS.to_ens ~reduce ~unwind (k,e,ens,t,[]))::ens) tl
777 let whd ?(delta=true) ?(subst=[]) context t =
778 unwind (reduce ~delta ~subst context (0, [], [], t, []))
785 (* ROTTO = rompe l'unificazione poiche' riduce gli argomenti di un'applicazione
786 senza ridurre la testa
787 module R = Reduction CallByNameStrategy;; OK 56.368s
788 module R = Reduction CallByValueStrategy;; ROTTO
789 module R = Reduction CallByValueStrategyByNameOnConstants;; ROTTO
790 module R = Reduction LazyCallByValueStrategy;; ROTTO
791 module R = Reduction LazyCallByValueStrategyByNameOnConstants;; ROTTO
792 module R = Reduction LazyCallByNameStrategy;; OK 0m56.398s
794 LazyCallByValueByNameOnConstantsWhenFromStack_ByNameStrategyWhenFromEnvOrEns;;
796 module R = Reduction ClosuresOnStackByValueFromEnvOrEnsStrategy;; OK 58.583s
798 ClosuresOnStackByValueFromEnvOrEnsByNameOnConstantsStrategy;; OK 58.094s
799 module R = Reduction(ClosuresOnStackByValueFromEnvOrEnsStrategy);; OK 58.127s
801 (*module R = Reduction(CallByValueByNameForUnwind);;*)
802 module RS = CallByValueByNameForUnwind';;
803 (*module R = Reduction(CallByNameStrategy);;*)
804 (*module R = Reduction(ClosuresOnStackByValueFromEnvOrEnsStrategy);;*)
805 module R = Reduction(RS);;
806 module U = UriManager;;
812 let profiler_whd = HExtlib.profile ~enable:profile "are_convertible.whd" in
813 fun ?(delta=true) ?(subst=[]) context t ->
814 profiler_whd.HExtlib.profile (whd ~delta ~subst context) t
817 (* mimic ocaml (<< 3.08) "=" behaviour. Tests physical equality first then
818 * fallbacks to structural equality *)
820 Pervasives.compare x y = 0
822 (* t1, t2 must be well-typed *)
823 let are_convertible whd ?(subst=[]) ?(metasenv=[]) =
824 let heuristic = ref true in
825 let rec aux test_equality_only context t1 t2 ugraph =
826 let rec aux2 test_equality_only t1 t2 ugraph =
828 (* this trivial euristic cuts down the total time of about five times ;-) *)
829 (* this because most of the time t1 and t2 are "sintactically" the same *)
834 let module C = Cic in
836 (C.Rel n1, C.Rel n2) -> (n1 = n2),ugraph
837 | (C.Var (uri1,exp_named_subst1), C.Var (uri2,exp_named_subst2)) ->
838 if U.eq uri1 uri2 then
841 (fun (uri1,x) (uri2,y) (b,ugraph) ->
842 let b',ugraph' = aux test_equality_only context x y ugraph in
843 (U.eq uri1 uri2 && b' && b),ugraph'
844 ) exp_named_subst1 exp_named_subst2 (true,ugraph)
846 Invalid_argument _ -> false,ugraph
850 | (C.Meta (n1,l1), C.Meta (n2,l2)) ->
853 let l1 = CicUtil.clean_up_local_context subst metasenv n1 l1 in
854 let l2 = CicUtil.clean_up_local_context subst metasenv n2 l2 in
856 (fun (b,ugraph) t1 t2 ->
860 | _,None -> true,ugraph
861 | Some t1',Some t2' ->
862 aux test_equality_only context t1' t2' ugraph
865 ) (true,ugraph) l1 l2
867 if b2 then true,ugraph1 else false,ugraph
870 | C.Meta (n1,l1), _ ->
872 let _,term,_ = CicUtil.lookup_subst n1 subst in
873 let term' = CicSubstitution.subst_meta l1 term in
875 prerr_endline ("%?: " ^ CicPp.ppterm t1 ^ " <==> " ^ CicPp.ppterm t2);
876 prerr_endline ("%%%%%%: " ^ CicPp.ppterm term' ^ " <==> " ^ CicPp.ppterm t2);
878 aux test_equality_only context term' t2 ugraph
879 with CicUtil.Subst_not_found _ -> false,ugraph)
880 | _, C.Meta (n2,l2) ->
882 let _,term,_ = CicUtil.lookup_subst n2 subst in
883 let term' = CicSubstitution.subst_meta l2 term in
885 prerr_endline ("%?: " ^ CicPp.ppterm t1 ^ " <==> " ^ CicPp.ppterm t2);
886 prerr_endline ("%%%%%%: " ^ CicPp.ppterm term' ^ " <==> " ^ CicPp.ppterm t1);
888 aux test_equality_only context t1 term' ugraph
889 with CicUtil.Subst_not_found _ -> false,ugraph)
890 (* TASSI: CONSTRAINTS *)
891 | (C.Sort (C.Type t1), C.Sort (C.Type t2)) when test_equality_only ->
893 true,(CicUniv.add_eq t2 t1 ugraph)
894 with CicUniv.UniverseInconsistency _ -> false,ugraph)
895 (* TASSI: CONSTRAINTS *)
896 | (C.Sort (C.Type t1), C.Sort (C.Type t2)) ->
898 true,(CicUniv.add_ge t2 t1 ugraph)
899 with CicUniv.UniverseInconsistency _ -> false,ugraph)
900 (* TASSI: CONSTRAINTS *)
901 | (C.Sort s1, C.Sort (C.Type _)) -> (not test_equality_only),ugraph
902 (* TASSI: CONSTRAINTS *)
903 | (C.Sort s1, C.Sort s2) -> (s1 = s2),ugraph
904 | (C.Prod (name1,s1,t1), C.Prod(_,s2,t2)) ->
905 let b',ugraph' = aux true context s1 s2 ugraph in
907 aux test_equality_only ((Some (name1, (C.Decl s1)))::context)
911 | (C.Lambda (name1,s1,t1), C.Lambda(_,s2,t2)) ->
912 let b',ugraph' = aux true context s1 s2 ugraph in
914 aux test_equality_only ((Some (name1, (C.Decl s1)))::context)
918 | (C.LetIn (name1,s1,ty1,t1), C.LetIn(_,s2,ty2,t2)) ->
919 let b',ugraph' = aux test_equality_only context s1 s2 ugraph in
921 let b',ugraph = aux test_equality_only context ty1 ty2 ugraph in
923 aux test_equality_only
924 ((Some (name1, (C.Def (s1,ty1))))::context) t1 t2 ugraph'
929 | (C.Appl l1, C.Appl l2) ->
932 (fun x y (b,ugraph) ->
934 aux test_equality_only context x y ugraph
936 false,ugraph) l1 l2 (true,ugraph)
938 Invalid_argument _ -> false,ugraph
940 | (C.Const (uri1,exp_named_subst1), C.Const (uri2,exp_named_subst2)) ->
941 let b' = U.eq uri1 uri2 in
945 (fun (uri1,x) (uri2,y) (b,ugraph) ->
946 if b && U.eq uri1 uri2 then
947 aux test_equality_only context x y ugraph
950 ) exp_named_subst1 exp_named_subst2 (true,ugraph)
952 Invalid_argument _ -> false,ugraph
956 | (C.MutInd (uri1,i1,exp_named_subst1),
957 C.MutInd (uri2,i2,exp_named_subst2)
959 let b' = U.eq uri1 uri2 && i1 = i2 in
963 (fun (uri1,x) (uri2,y) (b,ugraph) ->
964 if b && U.eq uri1 uri2 then
965 aux test_equality_only context x y ugraph
968 ) exp_named_subst1 exp_named_subst2 (true,ugraph)
970 Invalid_argument _ -> false,ugraph
974 | (C.MutConstruct (uri1,i1,j1,exp_named_subst1),
975 C.MutConstruct (uri2,i2,j2,exp_named_subst2)
977 let b' = U.eq uri1 uri2 && i1 = i2 && j1 = j2 in
981 (fun (uri1,x) (uri2,y) (b,ugraph) ->
982 if b && U.eq uri1 uri2 then
983 aux test_equality_only context x y ugraph
986 ) exp_named_subst1 exp_named_subst2 (true,ugraph)
988 Invalid_argument _ -> false,ugraph
992 | (C.MutCase (uri1,i1,outtype1,term1,pl1),
993 C.MutCase (uri2,i2,outtype2,term2,pl2)) ->
994 let b' = U.eq uri1 uri2 && i1 = i2 in
996 let b'',ugraph''=aux test_equality_only context
997 outtype1 outtype2 ugraph in
999 let b''',ugraph'''= aux test_equality_only context
1000 term1 term2 ugraph'' in
1002 (fun x y (b,ugraph) ->
1004 aux test_equality_only context x y ugraph
1007 pl1 pl2 (b''',ugraph''')
1012 | (C.Fix (i1,fl1), C.Fix (i2,fl2)) ->
1015 (fun (types,len) (n,_,ty,_) ->
1016 (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types,
1022 (fun (_,recindex1,ty1,bo1) (_,recindex2,ty2,bo2) (b,ugraph) ->
1023 if b && recindex1 = recindex2 then
1024 let b',ugraph' = aux test_equality_only context ty1 ty2
1027 aux test_equality_only (tys@context) bo1 bo2 ugraph'
1032 fl1 fl2 (true,ugraph)
1035 | (C.CoFix (i1,fl1), C.CoFix (i2,fl2)) ->
1038 (fun (types,len) (n,ty,_) ->
1039 (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types,
1045 (fun (_,ty1,bo1) (_,ty2,bo2) (b,ugraph) ->
1047 let b',ugraph' = aux test_equality_only context ty1 ty2
1050 aux test_equality_only (tys@context) bo1 bo2 ugraph'
1055 fl1 fl2 (true,ugraph)
1058 | C.Cast (bo,_),t -> aux2 test_equality_only bo t ugraph
1059 | t,C.Cast (bo,_) -> aux2 test_equality_only t bo ugraph
1060 | (C.Implicit _, _) | (_, C.Implicit _) -> assert false
1061 | (_,_) -> false,ugraph
1066 aux2 test_equality_only t1 t2 ugraph
1070 if fst res = true then
1074 (*if !heuristic then prerr_endline ("NON FACILE: " ^ CicPp.ppterm t1 ^ " <===> " ^ CicPp.ppterm t2);*)
1075 (* heuristic := false; *)
1076 debug t1 [t2] "PREWHD";
1077 (*prerr_endline ("PREWHD: " ^ CicPp.ppterm t1 ^ " <===> " ^ CicPp.ppterm t2);*)
1079 prerr_endline ("PREWHD: " ^ CicPp.ppterm t1 ^ " <===> " ^ CicPp.ppterm t2);
1080 let t1' = whd ?delta:(Some true) ?subst:(Some subst) context t1 in
1081 let t2' = whd ?delta:(Some true) ?subst:(Some subst) context t2 in
1082 debug t1' [t2'] "POSTWHD";
1084 let rec convert_machines ugraph =
1087 | ((k1,env1,ens1,h1,s1),(k2,env2,ens2,h2,s2))::tl ->
1088 let (b,ugraph) as res =
1089 aux2 test_equality_only
1090 (R.unwind (k1,env1,ens1,h1,[])) (R.unwind (k2,env2,ens2,h2,[])) ugraph
1098 (fun si-> R.reduce ~delta:false ~subst context(RS.from_stack si))
1101 (fun si-> R.reduce ~delta:false ~subst context(RS.from_stack si))
1105 Invalid_argument _ -> None
1108 None -> false,ugraph
1109 | Some problems -> convert_machines ugraph problems
1113 convert_machines ugraph
1114 [R.reduce ~delta:true ~subst context (0,[],[],t1,[]),
1115 R.reduce ~delta:true ~subst context (0,[],[],t2,[])]
1116 (*prerr_endline ("POSTWH: " ^ CicPp.ppterm t1' ^ " <===> " ^ CicPp.ppterm t2');*)
1118 aux2 test_equality_only t1' t2' ugraph
1122 aux false (*c t1 t2 ugraph *)
1126 let whd ?(delta=true) ?(subst=[]) context t =
1127 let res = whd ~delta ~subst context t in
1128 let rescsc = CicReductionNaif.whd ~delta ~subst context t in
1129 if not (fst (are_convertible CicReductionNaif.whd ~subst context res rescsc CicUniv.empty_ugraph)) then
1131 debug_print (lazy ("PRIMA: " ^ CicPp.ppterm t)) ;
1133 debug_print (lazy ("DOPO: " ^ CicPp.ppterm res)) ;
1135 debug_print (lazy ("CSC: " ^ CicPp.ppterm rescsc)) ;
1138 let _ = are_convertible CicReductionNaif.whd ~subst context res rescsc CicUniv.empty_ugraph in
1146 let are_convertible = are_convertible whd
1151 let profiler_other_whd = HExtlib.profile ~enable:profile "~are_convertible.whd"
1152 let whd ?(delta=true) ?(subst=[]) context t =
1154 whd ~delta ~subst context t
1156 profiler_other_whd.HExtlib.profile foo ()
1159 let rec normalize ?(delta=true) ?(subst=[]) ctx term =
1160 let module C = Cic in
1161 let t = whd ~delta ~subst ctx term in
1162 let aux = normalize ~delta ~subst in
1163 let decl name t = Some (name, C.Decl t) in
1166 | C.Var (uri,exp_named_subst) ->
1167 C.Var (uri, List.map (fun (n,t) -> n,aux ctx t) exp_named_subst)
1169 C.Meta (i,List.map (function Some t -> Some (aux ctx t) | None -> None) l)
1172 | C.Cast (te,ty) -> C.Cast (aux ctx te, aux ctx ty)
1174 let s' = aux ctx s in
1175 C.Prod (n, s', aux ((decl n s')::ctx) t)
1176 | C.Lambda (n,s,t) ->
1177 let s' = aux ctx s in
1178 C.Lambda (n, s', aux ((decl n s')::ctx) t)
1179 | C.LetIn (n,s,_,t) ->
1180 (* the term is already in weak head normal form *)
1182 | C.Appl (h::l) -> C.Appl (h::(List.map (aux ctx) l))
1183 | C.Appl [] -> assert false
1184 | C.Const (uri,exp_named_subst) ->
1185 C.Const (uri, List.map (fun (n,t) -> n,aux ctx t) exp_named_subst)
1186 | C.MutInd (uri,typeno,exp_named_subst) ->
1187 C.MutInd (uri,typeno, List.map (fun (n,t) -> n,aux ctx t) exp_named_subst)
1188 | C.MutConstruct (uri,typeno,consno,exp_named_subst) ->
1189 C.MutConstruct (uri, typeno, consno,
1190 List.map (fun (n,t) -> n,aux ctx t) exp_named_subst)
1191 | C.MutCase (sp,i,outt,t,pl) ->
1192 C.MutCase (sp,i, aux ctx outt, aux ctx t, List.map (aux ctx) pl)
1193 (*CSC: to be completed, I suppose *)
1197 let normalize ?delta ?subst ctx term =
1198 (* prerr_endline ("NORMALIZE:" ^ CicPp.ppterm term); *)
1199 let t = normalize ?delta ?subst ctx term in
1200 (* prerr_endline ("NORMALIZED:" ^ CicPp.ppterm t); *)
1204 (* performs an head beta/cast reduction *)
1205 let rec head_beta_reduce ?(delta=false) ?(upto=(-1)) t =
1210 (Cic.Appl (Cic.Lambda (_,_,t)::he'::tl')) ->
1211 let he'' = CicSubstitution.subst he' t in
1217 Cic.Appl l -> Cic.Appl (l@tl')
1218 | _ -> Cic.Appl (he''::tl')
1220 head_beta_reduce ~delta ~upto:(upto - 1) he'''
1221 | Cic.Cast (te,_) -> head_beta_reduce ~delta ~upto te
1222 | Cic.Appl (Cic.Const (uri,ens)::tl) as t when delta=true ->
1224 match fst (CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri) with
1225 Cic.Constant (_,bo,_,_,_) -> bo
1226 | Cic.Variable _ -> raise ReferenceToVariable
1227 | Cic.CurrentProof (_,_,bo,_,_,_) -> Some bo
1228 | Cic.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
1233 head_beta_reduce ~upto
1234 ~delta (Cic.Appl ((CicSubstitution.subst_vars ens bo)::tl)))
1235 | Cic.Const (uri,ens) as t when delta=true ->
1237 match fst (CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri) with
1238 Cic.Constant (_,bo,_,_,_) -> bo
1239 | Cic.Variable _ -> raise ReferenceToVariable
1240 | Cic.CurrentProof (_,_,bo,_,_,_) -> Some bo
1241 | Cic.InductiveDefinition _ -> raise ReferenceToInductiveDefinition
1246 head_beta_reduce ~delta ~upto (CicSubstitution.subst_vars ens bo))
1250 let are_convertible ?subst ?metasenv context t1 t2 ugraph =
1251 let before = Unix.gettimeofday () in
1252 let res = are_convertible ?subst ?metasenv context t1 t2 ugraph in
1253 let after = Unix.gettimeofday () in
1254 let diff = after -. before in
1257 let nc = List.map (function None -> None | Some (n,_) -> Some n) context in
1259 ("\n#(" ^ string_of_float diff ^ "):\n" ^ CicPp.pp t1 nc ^ "\n<=>\n" ^ CicPp.pp t2 nc);