2 ||M|| This file is part of HELM, an Hypertextual, Electronic
3 ||A|| Library of Mathematics, developed at the Computer Science
4 ||T|| Department, University of Bologna, Italy.
6 ||T|| HELM is free software; you can redistribute it and/or
7 ||A|| modify it under the terms of the GNU General Public License
8 \ / version 2 or (at your option) any later version.
9 \ / This software is distributed as is, NO WARRANTY.
10 V_______________________________________________________________ *)
14 (********************************* TERMS ************************************)
16 type universe = (bool * NUri.uri) list
17 (* Max of non-empty list of named universes, or their successor (when true)
18 * The empty list represents type0 *)
20 type sort = Prop | Type of universe
22 type implicit_annotation = [ `Closed | `Type | `Hole | `Term | `Typeof of int ]
24 type lc_kind = Irl of int | Ctx of term list
26 and local_context = int * lc_kind (* shift (0 -> no shift),
27 subst (Irl n means id of
30 | Rel of int (* DeBruijn index, 1 based *)
31 | Meta of int * local_context
32 | Appl of term list (* arguments *)
33 | Prod of string * term * term (* binder, source, target *)
34 | Lambda of string * term * term (* binder, source, target *)
35 | LetIn of string * term * term * term (* binder, type, term, body *)
36 (* Cast \def degenerate LetIn *)
37 | Const of NReference.reference (* ref has (indtype|constr)no *)
38 | Sort of sort (* sort *)
39 | Implicit of implicit_annotation (* ... *)
40 | Match of NReference.reference * (* ind. reference, *)
41 term * term * (* outtype, ind. term *)
42 term list (* patterns *)
45 (********************************* TYPING ***********************************)
47 type context_entry = (* A declaration or definition *)
48 | Decl of term (* type *)
49 | Def of term * term (* body, type *)
51 type hypothesis = string * context_entry (* name, entry *)
53 type context = hypothesis list
55 type conjecture = string option * context * term
57 type metasenv = (int * conjecture) list
59 type subst_entry = string option * context * term * term (* name,ctx,bo,ty *)
61 type substitution = (int * subst_entry) list
64 (******************************** OBJECTS **********************************)
66 type relevance = bool list (* relevance of arguments for conversion *)
68 (* relevance, name, recno, ty, bo *)
69 type inductiveFun = relevance * string * int * term * term
70 (* if coinductive, the int has no meaning and must be set to -1 *)
72 type constructor = relevance * string * term (* id, type *)
75 relevance * string * term * constructor list
76 (* relevance, typename, arity, constructors *)
78 type def_flavour = (* presentational *)
79 [ `Definition | `Fact | `Lemma | `Theorem | `Corollary | `Example ]
81 type def_pragma = (* pragmatic of the object *)
83 | `Elim of sort (* elimination principle; universe is not relevant *)
84 | `Projection (* record projection *)
85 | `InversionPrinciple (* inversion principle *)
88 | `Regular ] (* Local = hidden technicality *)
90 type ind_pragma = (* pragmatic of the object *)
91 [ `Record of (string * bool * int) list | `Regular ]
92 (* inductive type that encodes a record; the arguments are the record
93 * fields names and if they are coercions and then the coercion arity *)
95 type generated = [ `Generated | `Provided ]
97 type c_attr = generated * def_flavour * def_pragma
98 type f_attr = generated * def_flavour
99 type i_attr = generated * ind_pragma
101 (* invariant: metasenv and substitution have disjoint domains *)
103 | Constant of relevance * string * term option * term * c_attr
104 | Fixpoint of bool * inductiveFun list * f_attr
105 (* true -> fix, funcs, arrts *)
106 | Inductive of bool * int * inductiveType list * i_attr
107 (* true -> inductive, leftno, types *)
109 (* the int must be 0 if the object has no body *)
110 type obj = NUri.uri * int * metasenv * substitution * obj_kind