2 ||M|| This file is part of HELM, an Hypertextual, Electronic
3 ||A|| Library of Mathematics, developed at the Computer Science
4 ||T|| Department, University of Bologna, Italy.
6 ||T|| HELM is free software; you can redistribute it and/or
7 ||A|| modify it under the terms of the GNU General Public License
8 \ / version 2 or (at your option) any later version.
9 \ / This software is distributed as is, NO WARRANTY.
10 V_______________________________________________________________ *)
15 module Ref = NReference
17 let debug_print = fun _ -> ();;
20 let rec liftaux k = function
21 | C.Rel m as t -> if m < k then t else C.Rel (m + n)
22 | C.Meta (i,(m,l)) as t when k <= m ->
23 if n = 0 then t else C.Meta (i,(m+n,l))
24 | C.Meta (_,(m,C.Irl l)) as t when k > l + m -> t
26 let lctx = NCicUtils.expand_local_context l in
27 C.Meta (i, (m, C.Ctx (HExtlib.sharing_map (liftaux (k-m)) lctx)))
28 | C.Implicit _ -> (* was the identity *) assert false
29 | t -> NCicUtils.map (fun _ k -> k + 1) k liftaux t
34 let lift ?(from=1) n t =
36 else lift_from from n t
40 (* substitutes [t1] for [Rel 1] in [t2] *)
41 (* if avoid_beta_redexes is true (default: false) no new beta redexes *)
42 (* are generated. WARNING: the substitution can diverge when t2 is not *)
43 (* well typed and avoid_beta_redexes is true. *)
44 (* map_arg is ReductionStrategy.from_env_for_unwind when psubst is *)
45 (* used to implement nCicReduction.unwind' *)
46 let rec psubst ?(avoid_beta_redexes=false) map_arg args =
47 let nargs = List.length args in
48 let rec substaux k = function
51 | n when n >= (k+nargs) ->
52 if nargs <> 0 then C.Rel (n - nargs) else t
54 | n (* k <= n < k+nargs *) ->
55 (try lift (k-1) (map_arg (List.nth args (n-k)))
56 with Failure _ -> assert false))
57 | C.Meta (i,(m,l)) as t when m >= k + nargs - 1 ->
58 if nargs <> 0 then C.Meta (i,(m-nargs,l)) else t
59 | C.Meta (i,(m,(C.Irl l as irl))) as t when k > l + m ->
60 if nargs <> 0 then C.Meta (i,(m-nargs,irl)) else t
62 let lctx = NCicUtils.expand_local_context l in
63 (* 1-nargs < k-m, when <= 0 is still reasonable because we will
64 * substitute args[ k-m ... k-m+nargs-1 > 0 ] *)
65 C.Meta (i,(m, C.Ctx (HExtlib.sharing_map (substaux (k-m)) lctx)))
66 | C.Implicit _ -> assert false (* was identity *)
67 | C.Appl (he::tl) as t ->
68 (* Invariant: no Appl applied to another Appl *)
69 let rec avoid he' = function
73 | C.Appl l -> C.Appl (l@args)
74 | C.Lambda (_,_,bo) when avoid_beta_redexes ->
75 (* map_arg is here \x.x, Obj magic is needed because
76 * we don't have polymorphic recursion w/o records *)
78 ~avoid_beta_redexes Obj.magic [Obj.magic arg] bo) tl'
79 | _ -> if he == he' && args == tl then t else C.Appl (he'::args))
81 let tl = HExtlib.sharing_map (substaux k) tl in
82 avoid (substaux k he) tl
83 | t -> NCicUtils.map (fun _ k -> k + 1) k substaux t
88 let subst ?avoid_beta_redexes arg =
89 psubst ?avoid_beta_redexes (fun x -> x)[arg];;
91 (* subst_meta (n, Some [t_1 ; ... ; t_n]) t *)
92 (* returns the term [t] where [Rel i] is substituted with [t_i] lifted by n *)
93 (* [t_i] is lifted as usual when it crosses an abstraction *)
94 (* subst_meta (n, Non) t -> lift n t *)
95 let subst_meta = function
97 | m, C.Ctx [] -> lift m
98 | m, C.Ctx l -> psubst (lift m) l