1 module Ref = NReference
4 | Ce of (NCic.hypothesis * NCic.obj list) Lazy.t
5 | Fix of (Ref.reference * string * NCic.term) Lazy.t
9 Ce l -> `Ce (Lazy.force l)
10 | Fix l -> `Fix (Lazy.force l)
13 (***** A function to restrict the context of a term getting rid of unsed
16 let restrict octx ctx ot =
17 let odummy = Cic.Implicit None in
18 let dummy = NCic.Meta (~-1,(0,NCic.Irl 0)) in
19 let rec aux m acc ot t =
22 | ohe::otl as octx,he::tl ->
23 if CicTypeChecker.does_not_occur octx 0 1 ot then
24 aux (m+1) acc (CicSubstitution.subst odummy ot)
25 (NCicSubstitution.subst dummy t) (otl,tl)
27 (match ohe,strictify he with
28 None,_ -> assert false
29 | Some (name,Cic.Decl oty),`Ce ((name', NCic.Decl ty),objs) ->
30 aux (m+1) ((m+1,objs,None)::acc) (Cic.Lambda (name,oty,ot))
31 (NCic.Lambda (name',ty,t)) (otl,tl)
32 | Some (name,Cic.Decl oty),`Fix (ref,name',ty) ->
33 aux (m+1) ((m+1,[],Some ref)::acc) (Cic.Lambda (name,oty,ot))
34 (NCic.Lambda (name',ty,t)) (otl,tl)
35 | Some (name,Cic.Def (obo,oty)),`Ce ((name', NCic.Def (bo,ty)),objs) ->
36 aux (m+1) ((m+1,objs,None)::acc) (Cic.LetIn (name,obo,oty,ot))
37 (NCic.LetIn (name',bo,ty,t)) (otl,tl)
38 | _,_ -> assert false)
39 | _,_ -> assert false in
40 let rec split_lambdas_and_letins octx ctx infos (ote,te) =
41 match infos, ote, te with
42 ([], _, _) -> octx,ctx,ote
43 | ((_,objs,None)::tl, Cic.Lambda(name,oso,ota), NCic.Lambda(name',so,ta)) ->
44 split_lambdas_and_letins ((Some(name,(Cic.Decl oso)))::octx)
45 (Ce (lazy ((name',NCic.Decl so),objs))::ctx) tl (ota,ta)
46 | ((_,objs,Some r)::tl,Cic.Lambda(name,oso,ota),NCic.Lambda(name',so,ta)) ->
47 split_lambdas_and_letins ((Some(name,(Cic.Decl oso)))::octx)
48 (Fix (lazy (r,name',so))::ctx) tl (ota,ta)
49 | ((_,objs,None)::tl,Cic.LetIn(name,obo,oty,ota),NCic.LetIn(nam',bo,ty,ta))->
50 split_lambdas_and_letins ((Some (name,(Cic.Def (obo,oty))))::octx)
51 (Ce (lazy ((nam',NCic.Def (bo,ty)),objs))::ctx) tl (ota,ta)
52 | (_, _, _) -> assert false
54 let long_t,infos = aux 0 [] ot dummy (octx,ctx) in
55 let clean_octx,clean_ctx,clean_ot= split_lambdas_and_letins [] [] infos long_t
57 (*prerr_endline ("RESTRICT PRIMA: " ^ CicPp.pp ot (List.map (function None -> None | Some (name,_) -> Some name) octx));
58 prerr_endline ("RESTRICT DOPO: " ^ CicPp.pp clean_ot (List.map (function None -> None | Some (name,_) -> Some name) clean_octx));
60 clean_octx,clean_ctx,clean_ot, List.map (fun (rel,_,_) -> rel) infos
64 (**** The translation itself ****)
66 let cn_to_s = function
67 | Cic.Anonymous -> "_"
71 let splat mk_pi ctx t =
74 match strictify c with
75 | `Ce ((name, NCic.Def (bo,ty)),l') -> NCic.LetIn (name, ty, bo, t),l@l'
76 | `Ce ((name, NCic.Decl ty),l') when mk_pi -> NCic.Prod (name, ty, t),l@l'
77 | `Ce ((name, NCic.Decl ty),l') -> NCic.Lambda (name, ty, t),l@l'
78 | `Fix (_,name,ty) when mk_pi -> NCic.Prod (name, ty, t),l
79 | `Fix (_,name,ty) -> NCic.Lambda (name,ty,t),l)
83 let context_tassonomy ctx =
84 let rec split inner acc acc1 = function
85 | Ce _ :: tl when inner -> split inner (acc+1) (acc1+1) tl
86 | Fix _ ::tl -> split false acc (acc1+1) tl
92 (match strictify ce with
93 `Ce ((_, NCic.Decl _),_) -> true
97 acc, List.length l, lazy (List.length (only_decl ())), acc1
102 let splat_args_for_rel ctx t ?rels n_fix =
107 let rec mk_irl = function 0 -> [] | n -> n::mk_irl (n - 1) in
108 mk_irl (List.length ctx)
110 let bound, free, _, primo_ce_dopo_fix = context_tassonomy ctx in
113 let rec aux = function
114 | n,_ when n = bound + n_fix -> []
116 (match strictify (List.nth ctx (n-1)) with
117 | `Fix (refe, _, _) when n < primo_ce_dopo_fix ->
118 NCic.Const refe :: aux (n-1,tl)
119 | `Fix _ | `Ce ((_, NCic.Decl _),_) ->
120 NCic.Rel (he - n_fix)::aux(n-1,tl)
121 | `Ce ((_, NCic.Def _),_) -> aux (n-1,tl))
122 | _,_ -> assert false
124 NCic.Appl (t:: aux (List.length ctx,rels))
127 let splat_args ctx t n_fix rels =
128 let bound, free, _, primo_ce_dopo_fix = context_tassonomy ctx in
131 let rec aux = function
134 (match strictify (List.nth ctx (n-1)) with
135 | `Ce ((_, NCic.Decl _),_) when n <= bound ->
136 NCic.Rel he:: aux (n-1,tl)
137 | `Fix (refe, _, _) when n < primo_ce_dopo_fix ->
138 splat_args_for_rel ctx (NCic.Const refe) ~rels n_fix :: aux (n-1,tl)
139 | `Fix _ | `Ce((_, NCic.Decl _),_)-> NCic.Rel (he - n_fix)::aux(n-1,tl)
140 | `Ce ((_, NCic.Def _),_) -> aux (n - 1,tl)
142 | _,_ -> assert false
144 NCic.Appl (t:: aux ((List.length ctx,rels)))
147 exception Nothing_to_do;;
149 let fix_outty curi tyno t context outty =
151 match fst (CicEnvironment.get_obj CicUniv.oblivion_ugraph curi) with
152 Cic.InductiveDefinition (tyl,_,leftno,_) ->
153 let _,_,arity,_ = List.nth tyl tyno in
154 let rec count_prods leftno context arity =
155 match leftno, CicReduction.whd context arity with
157 | 0, Cic.Prod (name,so,ty) ->
158 1 + count_prods 0 (Some (name, Cic.Decl so)::context) ty
159 | n, Cic.Prod (name,so,ty) ->
160 count_prods (leftno - 1) (Some (name, Cic.Decl so)::context) ty
161 | _,_ -> assert false
163 (*prerr_endline (UriManager.string_of_uri curi);
164 prerr_endline ("LEFTNO: " ^ string_of_int leftno ^ " " ^ CicPp.ppterm arity);*)
165 leftno, count_prods leftno [] arity
166 | _ -> assert false in
168 let tty,_= CicTypeChecker.type_of_aux' [] context t CicUniv.oblivion_ugraph in
169 match CicReduction.whd context tty with
170 Cic.MutInd (_,_,ens) -> ens,[]
171 | Cic.Appl (Cic.MutInd (_,_,ens)::args) ->
172 ens,fst (HExtlib.split_nth leftno args)
175 let rec aux n irl context outsort =
176 match n, CicReduction.whd context outsort with
177 0, Cic.Prod _ -> raise Nothing_to_do
179 let irl = List.rev irl in
180 let ty = CicSubstitution.lift rightno (Cic.MutInd (curi,tyno,ens)) in
182 if args = [] && irl = [] then ty
184 Cic.Appl (ty::(List.map (CicSubstitution.lift rightno) args)@irl) in
185 let he = CicSubstitution.lift (rightno + 1) outty in
188 else Cic.Appl (he::List.map (CicSubstitution.lift 1) irl)
190 Cic.Lambda (Cic.Anonymous, ty, t)
191 | n, Cic.Prod (name,so,ty) ->
193 aux (n - 1) (Cic.Rel n::irl) (Some (name, Cic.Decl so)::context) ty
195 Cic.Lambda (name,so,ty')
196 | _,_ -> assert false
198 (*prerr_endline ("RIGHTNO = " ^ string_of_int rightno ^ " OUTTY = " ^ CicPp.ppterm outty);*)
200 fst (CicTypeChecker.type_of_aux' [] context outty CicUniv.oblivion_ugraph)
202 try aux rightno [] context outsort
203 with Nothing_to_do -> outty
204 (*prerr_endline (CicPp.ppterm outty ^ " <==> " ^ CicPp.ppterm outty');*)
208 let module C = Cic in
209 let rec aux context =
212 | C.Var (uri,exp_named_subst) ->
213 let exp_named_subst' =
214 List.map (function i,t -> i, (aux context t)) exp_named_subst in
215 C.Var (uri,exp_named_subst')
217 | C.Meta _ -> assert false
219 | C.Cast (v,t) -> C.Cast (aux context v, aux context t)
221 C.Prod (n, aux context s, aux ((Some (n, C.Decl s))::context) t)
222 | C.Lambda (n,s,t) ->
223 C.Lambda (n, aux context s, aux ((Some (n, C.Decl s))::context) t)
224 | C.LetIn (n,s,ty,t) ->
226 (n, aux context s, aux context ty,
227 aux ((Some (n, C.Def(s,ty)))::context) t)
228 | C.Appl l -> C.Appl (List.map (aux context) l)
229 | C.Const (uri,exp_named_subst) ->
230 let exp_named_subst' =
231 List.map (function i,t -> i, (aux context t)) exp_named_subst
233 C.Const (uri,exp_named_subst')
234 | C.MutInd (uri,tyno,exp_named_subst) ->
235 let exp_named_subst' =
236 List.map (function i,t -> i, (aux context t)) exp_named_subst
238 C.MutInd (uri, tyno, exp_named_subst')
239 | C.MutConstruct (uri,tyno,consno,exp_named_subst) ->
240 let exp_named_subst' =
241 List.map (function i,t -> i, (aux context t)) exp_named_subst
243 C.MutConstruct (uri, tyno, consno, exp_named_subst')
244 | C.MutCase (uri, tyno, outty, term, patterns) ->
245 let outty = fix_outty uri tyno term context outty in
246 C.MutCase (uri, tyno, aux context outty,
247 aux context term, List.map (aux context) patterns)
248 | C.Fix (funno, funs) ->
251 (fun (types,len) (n,_,ty,_) ->
252 ((Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))))::types,
258 (fun (name, indidx, ty, bo) ->
259 (name, indidx, aux context ty, aux (tys@context) bo)
262 | C.CoFix (funno, funs) ->
265 (fun (types,len) (n,ty,_) ->
266 ((Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))))::types,
272 (fun (name, ty, bo) ->
273 (name, aux context ty, aux (tys@context) bo)
280 let get_fresh,reset_seed =
284 string_of_int !seed),
285 (function () -> seed := 0)
289 let alpha t1 t2 ref ref' =
290 let rec aux t1 t2 = match t1,t2 with
291 | NCic.Rel n, NCic.Rel m when n=m -> ()
292 | NCic.Appl l1, NCic.Appl l2 -> List.iter2 aux l1 l2
293 | NCic.Lambda (_,s1,t1), NCic.Lambda (_,s2,t2)
294 | NCic.Prod (_,s1,t1), NCic.Prod (_,s2,t2) -> aux s1 s2; aux t1 t2
295 | NCic.LetIn (_,s1,ty1,t1), NCic.LetIn (_,s2,ty2,t2) ->
296 aux s1 s2; aux ty1 ty2; aux t1 t2
297 | NCic.Const (NReference.Ref (_,uu1,xp1)),
298 NCic.Const (NReference.Ref (_,uu2,xp2)) when
299 let NReference.Ref (_,u1,_) = ref in
300 let NReference.Ref (_,u2,_) = ref' in
301 NUri.eq uu1 u1 && NUri.eq uu2 u2 && xp1 = xp2
303 | NCic.Const r1, NCic.Const r2 when NReference.eq r1 r2 -> ()
304 | NCic.Meta _,NCic.Meta _ -> ()
305 | NCic.Implicit _,NCic.Implicit _ -> ()
306 | NCic.Sort x,NCic.Sort y when x=y -> ()
307 | NCic.Match (_,t1,t11,tl1), NCic.Match (_,t2,t22,tl2) ->
308 aux t1 t2;aux t11 t22;List.iter2 aux tl1 tl2
309 | _-> raise NotSimilar
311 try aux t1 t2; true with NotSimilar -> false
314 exception Found of NReference.reference;;
315 let cache = Hashtbl.create 313;;
316 let same_obj ref ref' =
318 | (_,_,_,_,NCic.Fixpoint (_,l1,_)), (_,_,_,_,NCic.Fixpoint (_,l2,_))
319 when List.for_all2 (fun (_,_,_,ty1,bo1) (_,_,_,ty2,bo2) ->
320 alpha ty1 ty2 ref ref' && alpha bo1 bo2 ref ref') l1 l2 ->
324 let find_in_cache name obj ref =
327 (function (ref',obj') ->
330 NReference.Ref (_,_,NReference.Fix (fixno,recno)) -> recno,fixno
331 | _ -> assert false in
334 NReference.Ref (_,_,NReference.Fix (fixno',recno)) -> recno,fixno'
335 | _ -> assert false in
336 if recno = recno' && fixno = fixno' && same_obj ref ref' (obj,obj') then (
338 prerr_endline ("!!!!!!!!!!! CACHE HIT !!!!!!!!!!\n" ^
339 NReference.string_of_reference ref ^ "\n" ^
340 NReference.string_of_reference ref' ^ "\n");
344 prerr_endline ("CACHE SAME NAME: " ^ NReference.string_of_reference ref ^ " <==> " ^ NReference.string_of_reference ref');
346 ) (Hashtbl.find_all cache name);
347 (* prerr_endline "<<< CACHE MISS >>>"; *)
350 | (_,_,_,_,NCic.Fixpoint (true,fl,_)) , NReference.Ref (x,y,NReference.Fix _) ->
351 ignore(List.fold_left (fun i (_,name,rno,_,_) ->
352 let ref = NReference.mk_fix i rno ref in
353 Hashtbl.add cache name (ref,obj);
359 with Found ref -> Some ref
362 (* we are lambda-lifting also variables that do not occur *)
363 (* ctx does not distinguish successive blocks of cofix, since there may be no
364 * lambda separating them *)
365 let convert_term uri t =
366 (* k=true if we are converting a term to be pushed in a ctx or if we are
367 converting the type of a fix;
368 k=false if we are converting a term to be put in the body of a fix;
369 in the latter case, we must permute Rels since the Fix abstraction will
370 preceed its lefts parameters; in the former case, there is nothing to
372 let rec aux k octx (ctx : ctx list) n_fix uri = function
373 | Cic.CoFix _ as cofix ->
374 let octx,ctx,fix,rels = restrict octx ctx cofix in
376 match fix with Cic.CoFix (cofixno,fl)->cofixno,fl | _-> assert false in
378 UriManager.uri_of_string
379 (UriManager.buri_of_uri uri^"/"^
380 UriManager.name_of_uri uri ^ "___" ^ get_fresh () ^ ".con")
382 let bctx, fixpoints_tys, tys, _ =
384 (fun (name,ty,_) (bctx, fixpoints, tys, idx) ->
385 let ty, fixpoints_ty = aux true octx ctx n_fix uri ty in
386 let r = Ref.reference_of_ouri buri(Ref.CoFix idx) in
387 bctx @ [Fix (lazy (r,name,ty))],
388 fixpoints_ty @ fixpoints,ty::tys,idx-1)
389 fl ([], [], [], List.length fl-1)
391 let bctx = bctx @ ctx in
392 let n_fl = List.length fl in
395 (fun (types,len) (n,ty,_) ->
396 (Some (Cic.Name n,(Cic.Decl (CicSubstitution.lift len ty)))::types,
401 (fun (name,_,bo) ty (l,fixpoints) ->
402 let bo, fixpoints_bo = aux false boctx bctx n_fl buri bo in
403 let splty,fixpoints_splty = splat true ctx ty in
404 let splbo,fixpoints_splbo = splat false ctx bo in
405 (([],name,~-1,splty,splbo)::l),
406 fixpoints_bo @ fixpoints_splty @ fixpoints_splbo @ fixpoints)
407 fl tys ([],fixpoints_tys)
410 NUri.nuri_of_ouri buri,0,[],[],
411 NCic.Fixpoint (false, fl, (`Generated, `Definition))
414 (NCic.Const (Ref.reference_of_ouri buri (Ref.CoFix cofixno)))
417 | Cic.Fix _ as fix ->
418 let octx,ctx,fix,rels = restrict octx ctx fix in
420 match fix with Cic.Fix (fixno,fl) -> fixno,fl | _ -> assert false in
422 UriManager.uri_of_string
423 (UriManager.buri_of_uri uri^"/"^
424 UriManager.name_of_uri uri ^ "___" ^ get_fresh () ^ ".con")
426 let bad_bctx, fixpoints_tys, tys, _ =
428 (fun (name,recno,ty,_) (bctx, fixpoints, tys, idx) ->
429 let ty, fixpoints_ty = aux true octx ctx n_fix uri ty in
430 let r = (* recno is dummy here, must be lifted by the ctx len *)
431 Ref.reference_of_ouri buri (Ref.Fix (idx,recno))
433 bctx @ [Fix (lazy (r,name,ty))],
434 fixpoints_ty@fixpoints,ty::tys,idx-1)
435 fl ([], [], [], List.length fl-1)
437 let _, _, free_decls, _ = context_tassonomy (bad_bctx @ ctx) in
438 let free_decls = Lazy.force free_decls in
440 List.map (function ce -> match strictify ce with
441 | `Fix (Ref.Ref (_,_,Ref.Fix (idx, recno)),name, ty) ->
442 Fix (lazy (Ref.reference_of_ouri buri
443 (Ref.Fix (idx,recno+free_decls)),name,ty))
444 | _ -> assert false) bad_bctx @ ctx
446 let n_fl = List.length fl in
449 (fun (types,len) (n,_,ty,_) ->
450 (Some (Cic.Name n,(Cic.Decl (CicSubstitution.lift len ty)))::types,
453 let rno_fixno = ref 0 in
454 let fl, fixpoints,_ =
456 (fun (name,rno,_,bo) ty (l,fixpoints,idx) ->
457 let bo, fixpoints_bo = aux false boctx bctx n_fl buri bo in
458 let splty,fixpoints_splty = splat true ctx ty in
459 let splbo,fixpoints_splbo = splat false ctx bo in
460 let rno = rno + free_decls in
461 if idx = fixno then rno_fixno := rno;
462 (([],name,rno,splty,splbo)::l),
463 fixpoints_bo@fixpoints_splty@fixpoints_splbo@fixpoints,idx+1)
464 fl tys ([],fixpoints_tys,0)
467 NUri.nuri_of_ouri buri,max_int,[],[],
468 NCic.Fixpoint (true, fl, (`Generated, `Definition)) in
469 let r = Ref.reference_of_ouri buri (Ref.Fix (fixno,!rno_fixno)) in
471 let _,name,_,_,_ = List.nth fl fixno in
472 match find_in_cache name obj r with
476 splat_args ctx (NCic.Const r) n_fix rels, fixpoints @ obj
478 let bound, _, _, primo_ce_dopo_fix = context_tassonomy ctx in
479 (match List.nth ctx (n-1) with
480 | Fix l when n < primo_ce_dopo_fix ->
481 let r,_,_ = Lazy.force l in
482 splat_args_for_rel ctx (NCic.Const r) n_fix, []
483 | Ce _ when n <= bound -> NCic.Rel n, []
484 | Fix _ when n <= bound -> assert false
485 | Fix _ | Ce _ when k = true -> NCic.Rel n, []
486 | Fix _ | Ce _ -> NCic.Rel (n-n_fix), [])
487 | Cic.Lambda (name, (s as old_s), t) ->
488 let s, fixpoints_s = aux k octx ctx n_fix uri s in
489 let s'_and_fixpoints_s' = lazy (aux true octx ctx n_fix uri old_s) in
492 let s',fixpoints_s' = Lazy.force s'_and_fixpoints_s' in
493 ((cn_to_s name, NCic.Decl s'),fixpoints_s'))::ctx in
494 let octx = Some (name, Cic.Decl old_s) :: octx in
495 let t, fixpoints_t = aux k octx ctx n_fix uri t in
496 NCic.Lambda (cn_to_s name, s, t), fixpoints_s @ fixpoints_t
497 | Cic.Prod (name, (s as old_s), t) ->
498 let s, fixpoints_s = aux k octx ctx n_fix uri s in
499 let s'_and_fixpoints_s' = lazy (aux true octx ctx n_fix uri old_s) in
502 let s',fixpoints_s' = Lazy.force s'_and_fixpoints_s' in
503 ((cn_to_s name, NCic.Decl s'),fixpoints_s'))::ctx in
504 let octx = Some (name, Cic.Decl old_s) :: octx in
505 let t, fixpoints_t = aux k octx ctx n_fix uri t in
506 NCic.Prod (cn_to_s name, s, t), fixpoints_s @ fixpoints_t
507 | Cic.LetIn (name, (te as old_te), (ty as old_ty), t) ->
508 let te, fixpoints_s = aux k octx ctx n_fix uri te in
509 let te_and_fixpoints_s' = lazy (aux true octx ctx n_fix uri old_te) in
510 let ty, fixpoints_ty = aux k octx ctx n_fix uri ty in
511 let ty_and_fixpoints_ty' = lazy (aux true octx ctx n_fix uri old_ty) in
514 let te',fixpoints_s' = Lazy.force te_and_fixpoints_s' in
515 let ty',fixpoints_ty' = Lazy.force ty_and_fixpoints_ty' in
516 let fixpoints' = fixpoints_s' @ fixpoints_ty' in
517 ((cn_to_s name, NCic.Def (te', ty')),fixpoints'))::ctx in
518 let octx = Some (name, Cic.Def (old_te, old_ty)) :: octx in
519 let t, fixpoints_t = aux k octx ctx n_fix uri t in
520 NCic.LetIn (cn_to_s name, ty, te, t),
521 fixpoints_s @ fixpoints_t @ fixpoints_ty
523 let t, fixpoints_t = aux k octx ctx n_fix uri t in
524 let ty, fixpoints_ty = aux k octx ctx n_fix uri ty in
525 NCic.LetIn ("cast", ty, t, NCic.Rel 1), fixpoints_t @ fixpoints_ty
526 | Cic.Sort Cic.Prop -> NCic.Sort NCic.Prop,[]
527 | Cic.Sort Cic.CProp -> NCic.Sort NCic.CProp,[]
528 | Cic.Sort (Cic.Type u) ->
529 NCic.Sort (NCic.Type (CicUniv.get_rank u)),[]
530 | Cic.Sort Cic.Set -> NCic.Sort (NCic.Type 0),[]
531 (* calculate depth in the univ_graph*)
536 let t, fixpoints = aux k octx ctx n_fix uri t in
537 (t::l,fixpoints@acc))
541 | (NCic.Appl l1)::l2 -> NCic.Appl (l1@l2), fixpoints
542 | _ -> NCic.Appl l, fixpoints)
543 | Cic.Const (curi, ens) ->
544 aux_ens k curi octx ctx n_fix uri ens
545 (match fst(CicEnvironment.get_obj CicUniv.oblivion_ugraph curi) with
546 | Cic.Constant (_,Some _,_,_,_) ->
547 NCic.Const (Ref.reference_of_ouri curi Ref.Def)
548 | Cic.Constant (_,None,_,_,_) ->
549 NCic.Const (Ref.reference_of_ouri curi Ref.Decl)
551 | Cic.MutInd (curi, tyno, ens) ->
552 aux_ens k curi octx ctx n_fix uri ens
553 (NCic.Const (Ref.reference_of_ouri curi (Ref.Ind tyno)))
554 | Cic.MutConstruct (curi, tyno, consno, ens) ->
555 aux_ens k curi octx ctx n_fix uri ens
556 (NCic.Const (Ref.reference_of_ouri curi (Ref.Con (tyno,consno))))
557 | Cic.Var (curi, ens) ->
558 (match fst (CicEnvironment.get_obj CicUniv.oblivion_ugraph curi) with
559 Cic.Variable (_,Some bo,_,_,_) ->
560 aux k octx ctx n_fix uri (CicSubstitution.subst_vars ens bo)
562 | Cic.MutCase (curi, tyno, outty, t, branches) ->
563 let r = Ref.reference_of_ouri curi (Ref.Ind tyno) in
564 let outty, fixpoints_outty = aux k octx ctx n_fix uri outty in
565 let t, fixpoints_t = aux k octx ctx n_fix uri t in
566 let branches, fixpoints =
569 let t, fixpoints = aux k octx ctx n_fix uri t in
570 (t::l,fixpoints@acc))
573 NCic.Match (r,outty,t,branches), fixpoints_outty@fixpoints_t@fixpoints
574 | Cic.Implicit _ | Cic.Meta _ -> assert false
575 and aux_ens k curi octx ctx n_fix uri ens he =
580 match fst (CicEnvironment.get_obj CicUniv.oblivion_ugraph curi) with
581 Cic.Constant (_,_,_,params,_)
582 | Cic.InductiveDefinition (_,params,_,_) -> params
584 | Cic.CurrentProof _ -> assert false
588 (fun luri (l,objs) ->
589 match fst (CicEnvironment.get_obj CicUniv.oblivion_ugraph luri) with
590 Cic.Variable (_,Some _,_,_,_) -> l, objs
591 | Cic.Variable (_,None,_,_,_) ->
592 let t = List.assoc luri ens in
593 let t,o = aux k octx ctx n_fix uri t in
598 NCic.Appl (he::ens),objs
600 aux false [] [] 0 uri t
603 let cook mode vars t =
604 let t = fix_outtype t in
605 let varsno = List.length vars in
606 let t = CicSubstitution.lift varsno t in
607 let rec aux n acc l =
609 snd(List.fold_left (fun (i,res) uri -> i+1,(uri,Cic.Rel i)::res) (1,[]) acc)
612 [] -> CicSubstitution.subst_vars subst t
615 match fst (CicEnvironment.get_obj CicUniv.oblivion_ugraph uri) with
616 Cic.Variable (_,bo,ty,_,_) ->
617 HExtlib.map_option fix_outtype bo, fix_outtype ty
618 | _ -> assert false in
619 let ty = CicSubstitution.subst_vars subst ty in
620 let bo = HExtlib.map_option (CicSubstitution.subst_vars subst) bo in
621 let id = Cic.Name (UriManager.name_of_uri uri) in
622 let t = aux (n-1) (uri::acc) uris in
623 match bo,ty,mode with
624 None,ty,`Lambda -> Cic.Lambda (id,ty,t)
625 | None,ty,`Pi -> Cic.Prod (id,ty,t)
626 | Some bo,ty,_ -> Cic.LetIn (id,bo,ty,t)
631 let convert_obj_aux uri = function
632 | Cic.Constant (name, None, ty, vars, _) ->
633 let ty = cook `Pi vars ty in
634 let nty, fixpoints = convert_term uri ty in
635 assert(fixpoints = []);
636 NCic.Constant ([], name, None, nty, (`Provided,`Theorem,`Regular)),
638 | Cic.Constant (name, Some bo, ty, vars, _) ->
639 let bo = cook `Lambda vars bo in
640 let ty = cook `Pi vars ty in
641 let nbo, fixpoints_bo = convert_term uri bo in
642 let nty, fixpoints_ty = convert_term uri ty in
643 assert(fixpoints_ty = []);
644 NCic.Constant ([], name, Some nbo, nty, (`Provided,`Theorem,`Regular)),
645 fixpoints_bo @ fixpoints_ty
646 | Cic.InductiveDefinition (itl,vars,leftno,_) ->
647 let ind = let _,x,_,_ = List.hd itl in x in
650 (fun (name, _, ty, cl) (itl,acc) ->
651 let ty = cook `Pi vars ty in
652 let ty, fix_ty = convert_term uri ty in
655 (fun (name, ty) (cl,acc) ->
656 let ty = cook `Pi vars ty in
657 let ty, fix_ty = convert_term uri ty in
658 ([], name, ty)::cl, acc @ fix_ty)
661 ([], name, ty, cl)::itl, fix_ty @ fix_cl @ acc)
664 NCic.Inductive(ind, leftno + List.length
665 (List.filter (fun v ->
666 match fst (CicEnvironment.get_obj CicUniv.oblivion_ugraph v) with
667 Cic.Variable (_,Some _,_,_,_) -> false
668 | Cic.Variable (_,None,_,_,_) -> true
671 , itl, (`Provided, `Regular)),
674 | Cic.CurrentProof _ -> assert false
677 let convert_obj uri obj =
679 let o, fixpoints = convert_obj_aux uri obj in
680 let obj = NUri.nuri_of_ouri uri,max_int, [], [], o in