1 (* Copyright (C) 2002, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
30 if debug then (fun x -> prerr_endline (Lazy.force x)) else (fun _ -> ())
33 (* term ha tipo t1=t2; funziona solo se t1 e t2 hanno in testa costruttori
36 let discriminate_tac ~term =
38 let module U = UriManager in
39 let module P = PrimitiveTactics in
40 let module T = Tacticals in
42 match LibraryObjects.true_URI () with
44 | None -> raise (ProofEngineTypes.Fail (lazy "You need to register the default \"true\" definition first. Please use the \"default\" command")) in
46 match LibraryObjects.false_URI () with
48 | None -> raise (ProofEngineTypes.Fail (lazy "You need to register the default \"false\" definition first. Please use the \"default\" command")) in
49 let fail msg = raise (ProofEngineTypes.Fail (lazy ("Discriminate: " ^ msg))) in
50 let find_discriminating_consno t1 t2 =
53 | C.MutConstruct _, C.MutConstruct _ when t1 = t2 -> None
54 | C.Appl ((C.MutConstruct _ as constr1) :: args1),
55 C.Appl ((C.MutConstruct _ as constr2) :: args2)
56 when constr1 = constr2 ->
57 let rec aux_list l1 l2 =
60 | hd1 :: tl1, hd2 :: tl2 ->
61 (match aux hd1 hd2 with
62 | None -> aux_list tl1 tl2
63 | Some _ as res -> res)
64 | _ -> (* same constructor applied to a different number of args *)
68 | ((C.MutConstruct (_,_,consno1,subst1)),
69 (C.MutConstruct (_,_,consno2,subst2)))
70 | ((C.MutConstruct (_,_,consno1,subst1)),
71 (C.Appl ((C.MutConstruct (_,_,consno2,subst2)) :: _)))
72 | ((C.Appl ((C.MutConstruct (_,_,consno1,subst1)) :: _)),
73 (C.MutConstruct (_,_,consno2,subst2)))
74 | ((C.Appl ((C.MutConstruct (_,_,consno1,subst1)) :: _)),
75 (C.Appl ((C.MutConstruct (_,_,consno2,subst2)) :: _)))
76 when (consno1 <> consno2) || (subst1 <> subst2) ->
78 | _ -> fail "not a discriminable equality"
82 let mk_branches_and_outtype turi typeno consno context args =
83 (* a list of "True" except for the element in position consno which
85 match fst (CicEnvironment.get_obj CicUniv.empty_ugraph turi) with
86 | C.InductiveDefinition (ind_type_list,_,paramsno,_) ->
87 let _,_,rty,constructor_list = List.nth ind_type_list typeno in
88 let false_constr_id,_ = List.nth constructor_list (consno - 1) in
92 (* dubbio: e' corretto ridurre in questo context ??? *)
93 let red_ty = CicReduction.whd context cty in
96 | C.Prod (_,_,target) when (k <= paramsno) ->
97 CicSubstitution.subst (List.nth args (k-1))
99 | C.Prod (binder,source,target) when (k > paramsno) ->
100 C.Lambda (binder, source, (aux target (k+1)))
102 if (id = false_constr_id)
103 then (C.MutInd(false_URI,0,[]))
104 else (C.MutInd(true_URI,0,[]))
106 (CicSubstitution.lift 1 (aux red_ty 1)))
110 let rec mk_lambdas rev_left_args =
112 0, args, C.Prod (_,so,ta) ->
114 (C.Name (incr seed; "x" ^ string_of_int !seed),
116 mk_lambdas rev_left_args (0,args,ta))
117 | 0, args, C.Sort _ ->
121 | n -> C.Rel n :: mk_rels (n - 1) in
122 let argsno = List.length args in
125 (if argsno + List.length rev_left_args > 0 then
127 (C.MutInd (turi, typeno, []) ::
129 (CicSubstitution.lift (argsno + 1))
130 (List.rev rev_left_args)) @
133 C.MutInd (turi,typeno,[])),
135 | 0, _, _ -> assert false (* seriously screwed up *)
136 | n, he::tl, C.Prod (_,_,ta) ->
137 mk_lambdas (he::rev_left_args)(n-1,tl,CicSubstitution.subst he ta)
139 assert false (* we should probably reduce in some context *)
141 mk_lambdas [] (paramsno, args, rty)
146 let discriminate'_tac ~term status =
147 let (proof, goal) = status in
148 let _,metasenv,_subst,_,_, _ = proof in
149 let _,context,_ = CicUtil.lookup_meta goal metasenv in
151 CicTypeChecker.type_of_aux' metasenv context term CicUniv.empty_ugraph
154 | C.Appl [(C.MutInd (equri, 0, [])) ; tty ; t1 ; t2]
155 when LibraryObjects.is_eq_URI equri ->
156 let turi,typeno,exp_named_subst,args =
158 | (C.MutInd (turi,typeno,exp_named_subst)) ->
159 turi,typeno,exp_named_subst,[]
160 | (C.Appl (C.MutInd (turi,typeno,exp_named_subst)::args)) ->
161 turi,typeno,exp_named_subst,args
162 | _ -> fail "not a discriminable equality"
165 match find_discriminating_consno t1 t2 with
166 | Some consno -> consno
167 | None -> fail "discriminating terms are structurally equal"
169 let branches,outtype =
170 mk_branches_and_outtype turi typeno consno context args
172 ProofEngineTypes.apply_tactic
174 ~start:(EliminationTactics.elim_type_tac (C.MutInd (false_URI, 0, [])))
178 (ReductionTactics.change_tac
179 ~pattern:(ProofEngineTypes.conclusion_pattern None)
182 C.Lambda ( C.Name "x", tty,
183 C.MutCase (turi, typeno, outtype, (C.Rel 1), branches));
189 (EqualityTactics.rewrite_simpl_tac
190 ~direction:`RightToLeft
191 ~pattern:(ProofEngineTypes.conclusion_pattern None)
194 (IntroductionTactics.constructor_tac ~n:1)))) status
195 | _ -> fail "not an equality"
197 ProofEngineTypes.mk_tactic (discriminate'_tac ~term)
201 ProofEngineTypes.Fail (lazy "Injection: not a projectable equality");;
203 ProofEngineTypes.Fail (lazy "Injection: not an equality");;
204 let exn_nothingtodo =
205 ProofEngineTypes.Fail (lazy "Nothing to do");;
206 let exn_discrnonind =
207 ProofEngineTypes.Fail (lazy "Discriminate: object is not an Inductive Definition: it's imposible");;
208 let exn_injwronggoal =
209 ProofEngineTypes.Fail (lazy "Injection: goal after cut is not correct");;
211 ProofEngineTypes.Fail (lazy "Injection: not an equality over elements of an inductive type");;
214 let names = List.map (function Some (n,_) -> Some n | None -> None) ctx in
218 let rec injection_tac ~first_time ~term ~liftno ~continuation =
219 let module C = Cic in
220 let module CR = CicReduction in
221 let module U = UriManager in
222 let module P = PrimitiveTactics in
223 let module T = Tacticals in
224 let module PST = ProofEngineStructuralRules in
225 let module PET = ProofEngineTypes in
226 let are_convertible hd1 hd2 metasenv context =
227 fst (CR.are_convertible ~metasenv context hd1 hd2 CicUniv.empty_ugraph)
229 let injection_tac ~term status =
230 let (proof, goal) = status in
231 let _,metasenv,_subst, _,_, _ = proof in
232 let _,context,_ = CicUtil.lookup_meta goal metasenv in
233 let term = CicSubstitution.lift liftno term in
235 CicTypeChecker.type_of_aux' metasenv context term CicUniv.empty_ugraph
237 debug_print (lazy ("\ninjection su: " ^ pp context termty));
240 | C.Appl [(C.MutInd (equri, 0, [])) ; tty ; t1 ; t2]
241 when LibraryObjects.is_eq_URI equri -> begin
242 match (CicReduction.whd ~delta:true context tty) with
243 | C.MutInd (turi,typeno,ens)
244 | C.Appl (C.MutInd (turi,typeno,ens)::_) -> begin
246 | C.MutConstruct (uri1,typeno1,consno1,ens1),
247 C.MutConstruct (uri2,typeno2,consno2,ens2)
248 when (uri1 = uri2) && (typeno1 = typeno2) &&
249 (consno1 = consno2) && (ens1 = ens2) ->
250 if first_time then raise exn_nothingtodo
251 else continuation ~liftno
252 | C.Appl ((C.MutConstruct (uri1,typeno1,consno1,ens1))::applist1),
253 C.Appl ((C.MutConstruct (uri2,typeno2,consno2,ens2))::applist2)
254 when (uri1 = uri2) && (typeno1 = typeno2) &&
255 (consno1 = consno2) && (ens1 = ens2) ->
256 let rec traverse_list i l1 l2 =
258 | [],[] when first_time -> continuation
262 match List.nth context (n-1) with
263 | Some (C.Name id,_) ->
265 T.then_ ~start:(PST.clear ~hyps:[id])
266 ~continuation:(continuation ~liftno)
271 | hd1::tl1,hd2::tl2 ->
272 if are_convertible hd1 hd2 metasenv context then
273 traverse_list (i+1) tl1 tl2
275 injection1_tac ~i ~term
276 ~continuation:(traverse_list (i+1) tl1 tl2)
278 (* i 2 termini hanno in testa lo stesso costruttore,
279 * ma applicato a un numero diverso di termini *)
281 traverse_list 1 applist1 applist2 ~liftno
282 | C.MutConstruct (uri1,typeno1,consno1,ens1),
283 C.MutConstruct (uri2,typeno2,consno2,ens2)
284 | C.MutConstruct (uri1,typeno1,consno1,ens1),
285 C.Appl ((C.MutConstruct (uri2,typeno2,consno2,ens2))::_)
286 | C.Appl ((C.MutConstruct (uri1,typeno1,consno1,ens1))::_),
287 C.MutConstruct (uri2,typeno2,consno2,ens2)
288 | C.Appl ((C.MutConstruct (uri1,typeno1,consno1,ens1))::_),
289 C.Appl ((C.MutConstruct (uri2,typeno2,consno2,ens2))::_)
290 when (consno1 <> consno2) || (ens1 <> ens2) ->
291 discriminate_tac ~term
292 | _ when not first_time -> continuation ~liftno
293 | _ (* when first_time *) ->
297 match List.nth context (i-1) with
298 | Some (Cic.Name s, Cic.Def _) -> s
299 | Some (Cic.Name s, Cic.Decl _) -> s
303 ~start:(ReductionTactics.simpl_tac
304 ~pattern:(None,[name,Cic.Implicit (Some `Hole)],None))
305 ~continuation:(injection_tac ~first_time:false ~term ~liftno
307 | _ -> raise exn_nonproj
309 | _ when not first_time -> continuation ~liftno
310 | _ (* when first_time *) -> raise exn_nonproj
312 | _ -> raise exn_nonproj
314 PET.apply_tactic tac status
316 PET.mk_tactic (injection_tac ~term)
318 and injection1_tac ~term ~i ~liftno ~continuation =
319 let module C = Cic in
320 let module CTC = CicTypeChecker in
321 let module CU = CicUniv in
322 let module S = CicSubstitution in
323 let module U = UriManager in
324 let module P = PrimitiveTactics in
325 let module PET = ProofEngineTypes in
326 let module T = Tacticals in
327 let give_name seed = function
328 | C.Name _ as name -> name
329 | C.Anonymous -> C.Name (incr seed; "y" ^ string_of_int !seed)
331 let rec mk_rels = function | 0 -> [] | n -> C.Rel n :: (mk_rels (n - 1)) in
332 let injection1_tac ~term ~i status =
333 let (proof, goal) = status in
334 (* precondizione: t1 e t2 hanno in testa lo stesso costruttore ma
335 * differiscono (o potrebbero differire?) nell'i-esimo parametro
337 let term = CicSubstitution.lift liftno term in
338 let _,metasenv,_subst,_,_, _ = proof in
339 let _,context,_ = CicUtil.lookup_meta goal metasenv in
341 CicTypeChecker.type_of_aux' metasenv context term CicUniv.empty_ugraph
343 debug_print (lazy ("\ninjection1 su : " ^ pp context termty));
344 match termty with (* an equality *)
345 | C.Appl [(C.MutInd (equri, 0, [])) ; tty ; t1 ; t2]
346 when LibraryObjects.is_eq_URI equri ->
347 let turi,typeno,ens,params =
348 match tty with (* some inductive type *)
349 | C.MutInd (turi,typeno,ens) -> turi,typeno,ens,[]
350 | C.Appl (C.MutInd (turi,typeno,ens)::params) -> turi,typeno,ens,params
351 | _ -> raise exn_noneqind
353 let t1',t2',consno = (* sono i due sottotermini che differiscono *)
355 | C.Appl ((C.MutConstruct (uri1,typeno1,consno1,ens1))::applist1),
356 C.Appl ((C.MutConstruct (uri2,typeno2,consno2,ens2))::applist2)
357 when (uri1 = uri2) && (typeno1 = typeno2) &&
358 (consno1 = consno2) && (ens1 = ens2) ->
359 (* controllo ridondante *)
360 List.nth applist1 (i-1),List.nth applist2 (i-1),consno2
363 let tty',_ = CTC.type_of_aux' metasenv context t1' CU.empty_ugraph in
364 let patterns,outtype =
365 match fst (CicEnvironment.get_obj CicUniv.empty_ugraph turi) with
366 | C.InductiveDefinition (ind_type_list,_,paramsno,_)->
367 let left_params, right_params = HExtlib.split_nth paramsno params in
368 let _,_,_,constructor_list = List.nth ind_type_list typeno in
369 let i_constr_id,_ = List.nth constructor_list (consno - 1) in
373 (function (id,cty) ->
374 let reduced_cty = CicReduction.whd context cty in
375 let rec aux k = function
376 | C.Prod (_,_,tgt) when k <= paramsno ->
377 let left = List.nth left_params (k-1) in
378 aux (k+1) (CicSubstitution.subst left tgt)
379 | C.Prod (binder,source,target) when k > paramsno ->
380 let binder' = give_name seed binder in
381 C.Lambda (binder',source,(aux (k+1) target))
383 let nr_param_constr = k - paramsno - 1 in
384 if id = i_constr_id then C.Rel (k - i)
385 else S.lift nr_param_constr t1'
386 (* + 1 per liftare anche il lambda aggiunto
387 * esternamente al case *)
388 in CicSubstitution.lift 1 (aux 1 reduced_cty))
391 (* this code should be taken from cases_tac *)
394 let rec to_lambdas te head =
395 match CicReduction.whd context te with
396 | C.Prod (binder,so,ta) ->
397 let binder' = give_name seed binder in
398 C.Lambda (binder',so,to_lambdas ta head)
401 let rec skip_prods params te =
402 match params, CicReduction.whd context te with
404 | left::tl, C.Prod (_,_,ta) ->
405 skip_prods tl (CicSubstitution.subst left ta)
406 | _, _ -> assert false
410 List.fold_left (fun x y -> CicSubstitution.subst y x) tty left_params
412 (* non lift, ma subst coi left! *)
413 match S.lift 1 tty with
414 | C.MutInd _ as tty' -> tty'
416 let keep,abstract = HExtlib.split_nth (paramsno +1) l in
417 let keep = List.map (S.lift paramsno) keep in
418 C.Appl (keep@mk_rels (List.length abstract))
421 match ind_type_list with
424 (* this is in general wrong, do as in cases_tac *)
425 to_lambdas (skip_prods left_params ty)
427 (C.Name "cased", abstracted_tty,
428 (* here we should capture right parameters *)
429 (* 1 for his Lambda, one for the Lambda outside the match
430 * and then one for each to_lambda *)
431 S.lift (2+List.length right_params) tty'))
434 | _ -> raise exn_discrnonind
436 let cutted = C.Appl [C.MutInd (equri,0,[]) ; tty' ; t1' ; t2'] in
438 C.Appl [ C.Lambda (C.Name "x", tty,
439 C.MutCase (turi,typeno,outtype,C.Rel 1,patterns)) ; t1]
441 (* check if cutted and changed are well typed and if t1' ~ changed *)
444 let _,g = CicTypeChecker.type_of_aux' metasenv context cutted
447 let _,g = CicTypeChecker.type_of_aux' metasenv context changed g in
448 fst (CicReduction.are_convertible ~metasenv context t1' changed g)
450 | CicTypeChecker.TypeCheckerFailure _ -> false
453 PET.apply_tactic Tacticals.id_tac status
455 (debug_print (lazy ("CUT: " ^ pp context cutted));
457 (T.thens ~start: (P.cut_tac cutted)
459 [injection_tac ~first_time:false ~liftno:0 ~term:(C.Rel 1)
461 (fun ~liftno:x -> continuation ~liftno:(liftno+1+x))
462 (* here I need to lift all the continuations by 1;
463 since I am setting back liftno to 0, I actually
464 need to lift all the continuations by liftno + 1 *)
466 ~start:(PET.mk_tactic
468 debug_print (lazy "riempo il cut");
469 let (proof, goal) = status in
470 let _,metasenv,_subst,_,_, _ = proof in
471 let _,context,gty =CicUtil.lookup_meta goal metasenv in
472 let gty = Unshare.unshare gty in
475 | (C.Appl (C.MutInd (_,_,_)::_::t::_)) -> t
476 | _ -> raise exn_injwronggoal
479 (lazy ("metto questo: " ^ pp context changed));
481 (lazy ("al posto di questo: " ^ pp context new_t1'));
483 (lazy ("nel goal: " ^ pp context gty));
485 (lazy ("nel contesto:\n" ^ CicPp.ppcontext context));
487 (lazy ("e poi rewrite con: "^pp context term));
490 (ReductionTactics.change_tac
492 Some (ProofEngineHelpers.pattern_of
493 ~term:gty [new_t1']))
494 (fun _ m u -> changed,m,u))
501 (EqualityTactics.rewrite_simpl_tac
502 ~direction:`LeftToRight
503 ~pattern:(PET.conclusion_pattern None)
505 ~continuation:EqualityTactics.reflexivity_tac)
508 | _ -> raise exn_noneq
510 PET.mk_tactic (injection1_tac ~term ~i)
513 (* destruct performs either injection or discriminate *)
514 (* equivalent to Coq's "analyze equality" *)
517 ~first_time:true ~liftno:0 ~continuation:(fun ~liftno -> Tacticals.id_tac)