1 (* Copyright (C) 2002, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
29 (******************** THE FOURIER TACTIC ***********************)
31 (* La tactique Fourier ne fonctionne de manière sûre que si les coefficients
32 des inéquations et équations sont entiers. En attendant la tactique Field.
39 let debug x = print_string ("____ "^x) ; flush stdout;;
41 let debug_pcontext x =
43 List.iter (fun y -> match y with Some(Cic.Name(a),_) -> str := !str ^
45 debug ("contesto : "^ (!str) ^ "\n")
48 (******************************************************************************
49 Operations on linear combinations.
51 Opérations sur les combinaisons linéaires affines.
52 La partie homogène d'une combinaison linéaire est en fait une table de hash
53 qui donne le coefficient d'un terme du calcul des constructions,
54 qui est zéro si le terme n'y est pas.
60 The type for linear combinations
62 type flin = {fhom:(Cic.term , rational)Hashtbl.t;fcste:rational}
68 let flin_zero () = {fhom = Hashtbl.create 50;fcste=r0}
74 @return the rational associated with x (coefficient)
78 (Hashtbl.find f.fhom x)
84 Adds c to the coefficient of x
93 let cx = flin_coef f x in
94 Hashtbl.remove f.fhom x;
95 Hashtbl.add f.fhom x (rplus cx c);
97 |_->debug ("Internal error in Fourier! this is not a Rel "^CicPp.ppterm x^"\n");
98 let cx = flin_coef f x in
99 Hashtbl.remove f.fhom x;
100 Hashtbl.add f.fhom x (rplus cx c);
109 let flin_add_cste f c =
111 fcste=rplus f.fcste c}
115 @return a empty flin with r1 in fcste
117 let flin_one () = flin_add_cste (flin_zero()) r1;;
122 let flin_plus f1 f2 =
123 let f3 = flin_zero() in
124 Hashtbl.iter (fun x c -> let _=flin_add f3 x c in ()) f1.fhom;
125 Hashtbl.iter (fun x c -> let _=flin_add f3 x c in ()) f2.fhom;
126 flin_add_cste (flin_add_cste f3 f1.fcste) f2.fcste;
132 let flin_minus f1 f2 =
133 let f3 = flin_zero() in
134 Hashtbl.iter (fun x c -> let _=flin_add f3 x c in ()) f1.fhom;
135 Hashtbl.iter (fun x c -> let _=flin_add f3 x (rop c) in ()) f2.fhom;
136 flin_add_cste (flin_add_cste f3 f1.fcste) (rop f2.fcste);
143 let f2 = flin_zero() in
144 Hashtbl.iter (fun x c -> let _=flin_add f2 x (rmult a c) in ()) f.fhom;
145 flin_add_cste f2 (rmult a f.fcste);
149 (*****************************************************************************)
154 @raise Failure if conversion is impossible
155 @return rational proiection of t
157 let rec rational_of_term t =
158 (* fun to apply f to the first and second rational-term of l *)
159 let rat_of_binop f l =
160 let a = List.hd l and
161 b = List.hd(List.tl l) in
162 f (rational_of_term a) (rational_of_term b)
164 (* as before, but f is unary *)
165 let rat_of_unop f l =
166 f (rational_of_term (List.hd l))
169 | Cic.Cast (t1,t2) -> (rational_of_term t1)
170 | Cic.Appl (t1::next) ->
173 if UriManager.eq u HelmLibraryObjects.Reals.ropp_URI then
175 else if UriManager.eq u HelmLibraryObjects.Reals.rinv_URI then
176 rat_of_unop rinv next
177 else if UriManager.eq u HelmLibraryObjects.Reals.rmult_URI then
178 rat_of_binop rmult next
179 else if UriManager.eq u HelmLibraryObjects.Reals.rdiv_URI then
180 rat_of_binop rdiv next
181 else if UriManager.eq u HelmLibraryObjects.Reals.rplus_URI then
182 rat_of_binop rplus next
183 else if UriManager.eq u HelmLibraryObjects.Reals.rminus_URI then
184 rat_of_binop rminus next
185 else failwith "not a rational"
186 | _ -> failwith "not a rational")
187 | Cic.Const (u,boh) ->
188 if UriManager.eq u HelmLibraryObjects.Reals.r1_URI then r1
189 else if UriManager.eq u HelmLibraryObjects.Reals.r0_URI then r0
190 else failwith "not a rational"
191 | _ -> failwith "not a rational"
195 let rational_of_const = rational_of_term;;
205 let rec flin_of_term t =
206 let fl_of_binop f l =
207 let a = List.hd l and
208 b = List.hd(List.tl l) in
209 f (flin_of_term a) (flin_of_term b)
213 | Cic.Cast (t1,t2) -> (flin_of_term t1)
214 | Cic.Appl (t1::next) ->
219 if UriManager.eq u HelmLibraryObjects.Reals.ropp_URI then
220 flin_emult (rop r1) (flin_of_term (List.hd next))
221 else if UriManager.eq u HelmLibraryObjects.Reals.rplus_URI then
222 fl_of_binop flin_plus next
223 else if UriManager.eq u HelmLibraryObjects.Reals.rminus_URI then
224 fl_of_binop flin_minus next
225 else if UriManager.eq u HelmLibraryObjects.Reals.rmult_URI then
227 let arg1 = (List.hd next) and
228 arg2 = (List.hd(List.tl next))
230 if fails rational_of_term arg1
232 if fails rational_of_term arg2
234 ( (* prodotto tra 2 incognite ????? impossibile*)
235 failwith "Sistemi lineari!!!!\n"
240 Cic.Rel(n) -> (*trasformo al volo*)
241 (flin_add (flin_zero()) arg1 (rational_of_term arg2))
243 let tmp = flin_of_term arg1 in
244 flin_emult (rational_of_term arg2) (tmp)
247 if fails rational_of_term arg2
251 Cic.Rel(n) -> (*trasformo al volo*)
252 (flin_add (flin_zero()) arg2 (rational_of_term arg1))
254 let tmp = flin_of_term arg2 in
255 flin_emult (rational_of_term arg1) (tmp)
259 ( (*prodotto tra razionali*)
260 (flin_add_cste (flin_zero()) (rmult (rational_of_term arg1) (rational_of_term arg2)))
264 (*let a = rational_of_term arg1 in
265 debug("ho fatto rational of term di "^CicPp.ppterm arg1^
266 " e ho ottenuto "^string_of_int a.num^"/"^string_of_int a.den^"\n");*)
267 let a = flin_of_term arg1
270 let b = (rational_of_term arg2) in
271 debug("ho fatto rational of term di "^CicPp.ppterm arg2^
272 " e ho ottenuto "^string_of_int b.num^"/"^string_of_int b.den^"\n");
273 (flin_add_cste (flin_zero()) (rmult a b))
276 _ -> debug ("ho fallito2 su "^CicPp.ppterm arg2^"\n");
277 (flin_add (flin_zero()) arg2 a)
280 _-> debug ("ho fallito1 su "^CicPp.ppterm arg1^"\n");
281 (flin_add(flin_zero()) arg1 (rational_of_term arg2))
284 else if UriManager.eq u HelmLibraryObjects.Reals.rinv_URI then
285 let a=(rational_of_term (List.hd next)) in
286 flin_add_cste (flin_zero()) (rinv a)
287 else if UriManager.eq u HelmLibraryObjects.Reals.rdiv_URI then
289 let b=(rational_of_term (List.hd(List.tl next))) in
292 let a = (rational_of_term (List.hd next)) in
293 (flin_add_cste (flin_zero()) (rdiv a b))
296 _-> (flin_add (flin_zero()) (List.hd next) (rinv b))
302 | Cic.Const (u,boh) ->
304 if UriManager.eq u HelmLibraryObjects.Reals.r1_URI then flin_one ()
305 else if UriManager.eq u HelmLibraryObjects.Reals.r0_URI then flin_zero ()
309 with _ -> debug("eccezione = "^CicPp.ppterm t^"\n");flin_add (flin_zero()) t r1
313 let flin_of_constr = flin_of_term;;
317 Translates a flin to (c,x) list
319 @return something like (c1,x1)::(c2,x2)::...::(cn,xn)
321 let flin_to_alist f =
323 Hashtbl.iter (fun x c -> res:=(c,x)::(!res)) f;
327 (* Représentation des hypothèses qui sont des inéquations ou des équations.
331 The structure for ineq
333 type hineq={hname:Cic.term; (* le nom de l'hypothèse *)
334 htype:string; (* Rlt, Rgt, Rle, Rge, eqTLR ou eqTRL *)
341 (* Transforme une hypothese h:t en inéquation flin<0 ou flin<=0
344 let ineq1_of_term (h,t) =
345 match t with (* match t *)
346 Cic.Appl (t1::next) ->
347 let arg1= List.hd next in
348 let arg2= List.hd(List.tl next) in
349 (match t1 with (* match t1 *)
351 if UriManager.eq u HelmLibraryObjects.Reals.rlt_URI then
356 hflin= flin_minus (flin_of_term arg1)
359 else if UriManager.eq u HelmLibraryObjects.Reals.rgt_URI then
364 hflin= flin_minus (flin_of_term arg2)
367 else if UriManager.eq u HelmLibraryObjects.Reals.rle_URI then
372 hflin= flin_minus (flin_of_term arg1)
375 else if UriManager.eq u HelmLibraryObjects.Reals.rge_URI then
380 hflin= flin_minus (flin_of_term arg2)
384 | Cic.MutInd (u,i,o) ->
385 if UriManager.eq u HelmLibraryObjects.Logic.eq_URI then
388 let arg2= List.hd(List.tl (List.tl next)) in
391 if UriManager.eq u HelmLibraryObjects.Reals.r_URI then
396 hflin= flin_minus (flin_of_term arg1)
403 hflin= flin_minus (flin_of_term arg2)
409 |_-> assert false)(* match t1 *)
410 |_-> assert false (* match t *)
413 let ineq1_of_constr = ineq1_of_term;;
416 (* Applique la méthode de Fourier à une liste d'hypothèses (type hineq)
422 | a::next -> Fourier.print_rational a ; print_string " " ; print_rl next
425 let rec print_sys l =
428 | (a,b)::next -> (print_rl a;
429 print_string (if b=true then "strict\n"else"\n");
434 Hashtbl.iter (fun x y -> print_string ("("^"-"^","^"-"^")")) h
437 let fourier_lineq lineq1 =
439 let hvar=Hashtbl.create 50 in (* la table des variables des inéquations *)
441 Hashtbl.iter (fun x c ->
442 try ignore(Hashtbl.find hvar x)
443 with Not_found -> nvar:=(!nvar)+1;
444 Hashtbl.add hvar x (!nvar);
445 debug("aggiungo una var "^
446 string_of_int !nvar^" per "^
447 CicPp.ppterm x^"\n"))
451 debug("Il numero di incognite e' "^string_of_int (!nvar+1)^"\n");
452 let sys= List.map (fun h->
453 let v=Array.create ((!nvar)+1) r0 in
454 Hashtbl.iter (fun x c -> v.(Hashtbl.find hvar x) <- c)
456 ((Array.to_list v)@[rop h.hflin.fcste],h.hstrict))
458 debug ("chiamo unsolvable sul sistema di "^
459 string_of_int (List.length sys) ^"\n");
464 (*****************************************************************************
465 Construction de la preuve en cas de succès de la méthode de Fourier,
466 i.e. on obtient une contradiction.
470 let _eqT = Cic.MutInd(HelmLibraryObjects.Logic.eq_URI, 0, []) ;;
471 let _False = Cic.MutInd (HelmLibraryObjects.Logic.false_URI, 0, []) ;;
472 let _not = Cic.Const (HelmLibraryObjects.Logic.not_URI,[]);;
473 let _R0 = Cic.Const (HelmLibraryObjects.Reals.r0_URI,[]);;
474 let _R1 = Cic.Const (HelmLibraryObjects.Reals.r1_URI,[]);;
475 let _R = Cic.Const (HelmLibraryObjects.Reals.r_URI,[]);;
476 let _Rfourier_eqLR_to_le=Cic.Const ((UriManager.uri_of_string
477 "cic:/Coq/fourier/Fourier_util/Rfourier_eqLR_to_le.con"), []) ;;
478 let _Rfourier_eqRL_to_le=Cic.Const ((UriManager.uri_of_string
479 "cic:/Coq/fourier/Fourier_util/Rfourier_eqRL_to_le.con"), []) ;;
480 let _Rfourier_ge_to_le =Cic.Const ((UriManager.uri_of_string
481 "cic:/Coq/fourier/Fourier_util/Rfourier_ge_to_le.con"), []) ;;
482 let _Rfourier_gt_to_lt =Cic.Const ((UriManager.uri_of_string
483 "cic:/Coq/fourier/Fourier_util/Rfourier_gt_to_lt.con"), []) ;;
484 let _Rfourier_le=Cic.Const ((UriManager.uri_of_string
485 "cic:/Coq/fourier/Fourier_util/Rfourier_le.con"), []) ;;
486 let _Rfourier_le_le =Cic.Const ((UriManager.uri_of_string
487 "cic:/Coq/fourier/Fourier_util/Rfourier_le_le.con"), []) ;;
488 let _Rfourier_le_lt =Cic.Const ((UriManager.uri_of_string
489 "cic:/Coq/fourier/Fourier_util/Rfourier_le_lt.con"), []) ;;
490 let _Rfourier_lt=Cic.Const ((UriManager.uri_of_string
491 "cic:/Coq/fourier/Fourier_util/Rfourier_lt.con"), []) ;;
492 let _Rfourier_lt_le =Cic.Const ((UriManager.uri_of_string
493 "cic:/Coq/fourier/Fourier_util/Rfourier_lt_le.con"), []) ;;
494 let _Rfourier_lt_lt =Cic.Const ((UriManager.uri_of_string
495 "cic:/Coq/fourier/Fourier_util/Rfourier_lt_lt.con"), []) ;;
496 let _Rfourier_not_ge_lt = Cic.Const ((UriManager.uri_of_string
497 "cic:/Coq/fourier/Fourier_util/Rfourier_not_ge_lt.con"), []) ;;
498 let _Rfourier_not_gt_le = Cic.Const ((UriManager.uri_of_string
499 "cic:/Coq/fourier/Fourier_util/Rfourier_not_gt_le.con"), []) ;;
500 let _Rfourier_not_le_gt = Cic.Const ((UriManager.uri_of_string
501 "cic:/Coq/fourier/Fourier_util/Rfourier_not_le_gt.con"), []) ;;
502 let _Rfourier_not_lt_ge = Cic.Const ((UriManager.uri_of_string
503 "cic:/Coq/fourier/Fourier_util/Rfourier_not_lt_ge.con"), []) ;;
504 let _Rinv = Cic.Const (HelmLibraryObjects.Reals.rinv_URI, []);;
505 let _Rinv_R1 = Cic.Const(HelmLibraryObjects.Reals.rinv_r1_URI, []);;
506 let _Rle = Cic.Const (HelmLibraryObjects.Reals.rle_URI, []);;
507 let _Rle_mult_inv_pos = Cic.Const ((UriManager.uri_of_string
508 "cic:/Coq/fourier/Fourier_util/Rle_mult_inv_pos.con"), []) ;;
509 let _Rle_not_lt = Cic.Const ((UriManager.uri_of_string
510 "cic:/Coq/fourier/Fourier_util/Rle_not_lt.con"), []) ;;
511 let _Rle_zero_1 = Cic.Const ((UriManager.uri_of_string
512 "cic:/Coq/fourier/Fourier_util/Rle_zero_1.con"), []) ;;
513 let _Rle_zero_pos_plus1 = Cic.Const ((UriManager.uri_of_string
514 "cic:/Coq/fourier/Fourier_util/Rle_zero_pos_plus1.con"), []) ;;
515 let _Rlt = Cic.Const (HelmLibraryObjects.Reals.rlt_URI, []);;
516 let _Rlt_mult_inv_pos = Cic.Const ((UriManager.uri_of_string
517 "cic:/Coq/fourier/Fourier_util/Rlt_mult_inv_pos.con"), []) ;;
518 let _Rlt_not_le = Cic.Const ((UriManager.uri_of_string
519 "cic:/Coq/fourier/Fourier_util/Rlt_not_le.con"), []) ;;
520 let _Rlt_zero_1 = Cic.Const ((UriManager.uri_of_string
521 "cic:/Coq/fourier/Fourier_util/Rlt_zero_1.con"), []) ;;
522 let _Rlt_zero_pos_plus1 = Cic.Const ((UriManager.uri_of_string
523 "cic:/Coq/fourier/Fourier_util/Rlt_zero_pos_plus1.con"), []) ;;
524 let _Rminus = Cic.Const (HelmLibraryObjects.Reals.rminus_URI, []);;
525 let _Rmult = Cic.Const (HelmLibraryObjects.Reals.rmult_URI, []);;
526 let _Rnot_le_le =Cic.Const ((UriManager.uri_of_string
527 "cic:/Coq/fourier/Fourier_util/Rnot_le_le.con"), []) ;;
528 let _Rnot_lt0 = Cic.Const ((UriManager.uri_of_string
529 "cic:/Coq/fourier/Fourier_util/Rnot_lt0.con"), []) ;;
530 let _Rnot_lt_lt =Cic.Const ((UriManager.uri_of_string
531 "cic:/Coq/fourier/Fourier_util/Rnot_lt_lt.con"), []) ;;
532 let _Ropp = Cic.Const (HelmLibraryObjects.Reals.ropp_URI, []);;
533 let _Rplus = Cic.Const (HelmLibraryObjects.Reals.rplus_URI, []);;
535 (******************************************************************************)
537 let is_int x = (x.den)=1
540 (* fraction = couple (num,den) *)
541 let rec rational_to_fraction x= (x.num,x.den)
544 (* traduction -3 -> (Ropp (Rplus R1 (Rplus R1 R1)))
547 let rec int_to_real_aux n =
549 0 -> _R0 (* o forse R0 + R0 ????? *)
551 | _ -> Cic.Appl [ _Rplus ; _R1 ; int_to_real_aux (n-1) ]
556 let x = int_to_real_aux (abs n) in
558 Cic.Appl [ _Ropp ; x ]
564 (* -1/2 -> (Rmult (Ropp R1) (Rinv (Rplus R1 R1)))
567 let rational_to_real x =
568 let (n,d)=rational_to_fraction x in
569 Cic.Appl [ _Rmult ; int_to_real n ; Cic.Appl [ _Rinv ; int_to_real d ] ]
572 (* preuve que 0<n*1/d
575 let tac_zero_inf_pos (n,d) =
576 let tac_zero_inf_pos (n,d) status =
577 (*let cste = pf_parse_constr gl in*)
578 let pall str (proof,goal) t =
579 debug ("tac "^str^" :\n" );
580 let curi,metasenv,_subst,pbo,pty, attrs = proof in
581 let metano,context,ty = CicUtil.lookup_meta goal metasenv in
582 debug ("th = "^ CicPp.ppterm t ^"\n");
583 debug ("ty = "^ CicPp.ppterm ty^"\n");
585 let tacn=ref (mk_tactic (fun status ->
586 pall "n0" status _Rlt_zero_1 ;
587 apply_tactic (PrimitiveTactics.apply_tac ~term:_Rlt_zero_1) status )) in
588 let tacd=ref (mk_tactic (fun status ->
589 pall "d0" status _Rlt_zero_1 ;
590 apply_tactic (PrimitiveTactics.apply_tac ~term:_Rlt_zero_1) status )) in
594 tacn:=(Tacticals.then_
595 ~start:(mk_tactic (fun status ->
596 pall ("n"^string_of_int i) status _Rlt_zero_pos_plus1;
598 (PrimitiveTactics.apply_tac ~term:_Rlt_zero_pos_plus1)
600 ~continuation:!tacn);
603 tacd:=(Tacticals.then_
604 ~start:(mk_tactic (fun status ->
605 pall "d" status _Rlt_zero_pos_plus1 ;
607 (PrimitiveTactics.apply_tac ~term:_Rlt_zero_pos_plus1) status))
608 ~continuation:!tacd);
611 debug("TAC ZERO INF POS\n");
614 ~start:(PrimitiveTactics.apply_tac ~term:_Rlt_mult_inv_pos)
615 ~continuations:[!tacn ;!tacd ] )
618 mk_tactic (tac_zero_inf_pos (n,d))
623 (* preuve que 0<=n*1/d
626 let tac_zero_infeq_pos gl (n,d) =
627 let tac_zero_infeq_pos gl (n,d) status =
628 (*let cste = pf_parse_constr gl in*)
629 debug("inizio tac_zero_infeq_pos\n");
632 (PrimitiveTactics.apply_tac ~term:_Rle_zero_zero )
634 (PrimitiveTactics.apply_tac ~term:_Rle_zero_1 )
637 let tacd=ref (PrimitiveTactics.apply_tac ~term:_Rlt_zero_1 ) in
639 tacn:=(Tacticals.then_ ~start:(PrimitiveTactics.apply_tac
640 ~term:_Rle_zero_pos_plus1) ~continuation:!tacn);
643 tacd:=(Tacticals.then_ ~start:(PrimitiveTactics.apply_tac
644 ~term:_Rlt_zero_pos_plus1) ~continuation:!tacd);
648 ~start:(PrimitiveTactics.apply_tac ~term:_Rle_mult_inv_pos)
649 ~continuations:[!tacn;!tacd]) status
651 mk_tactic (tac_zero_infeq_pos gl (n,d))
656 (* preuve que 0<(-n)*(1/d) => False
659 let tac_zero_inf_false gl (n,d) =
660 let tac_zero_inf_false gl (n,d) status =
662 apply_tactic (PrimitiveTactics.apply_tac ~term:_Rnot_lt0) status
664 apply_tactic (Tacticals.then_
665 ~start:(mk_tactic (apply_tactic (PrimitiveTactics.apply_tac ~term:_Rle_not_lt)))
666 ~continuation:(tac_zero_infeq_pos gl (-n,d)))
669 mk_tactic (tac_zero_inf_false gl (n,d))
672 (* preuve que 0<=n*(1/d) => False ; n est negatif
675 let tac_zero_infeq_false gl (n,d) =
676 let tac_zero_infeq_false gl (n,d) status =
677 let (proof, goal) = status in
678 let curi,metasenv,_subst,pbo,pty, attrs = proof in
679 let metano,context,ty = CicUtil.lookup_meta goal metasenv in
681 debug("faccio fold di " ^ CicPp.ppterm
685 [_Rmult ; int_to_real n ; Cic.Appl [_Rinv ; int_to_real d]]
688 debug("apply di _Rlt_not_le a "^ CicPp.ppterm ty ^"\n");
689 (*CSC: Patch to undo the over-simplification of RewriteSimpl *)
693 (ReductionTactics.fold_tac
694 ~reduction:(const_lazy_reduction CicReduction.whd)
695 ~pattern:(ProofEngineTypes.conclusion_pattern None)
701 [_Rmult ; int_to_real n ; Cic.Appl [_Rinv ; int_to_real d]]])))
704 ~start:(PrimitiveTactics.apply_tac ~term:_Rlt_not_le)
705 ~continuation:(tac_zero_inf_pos (-n,d))))
708 mk_tactic (tac_zero_infeq_false gl (n,d))
712 (* *********** ********** ******** ??????????????? *********** **************)
714 let apply_type_tac ~cast:t ~applist:al =
715 let apply_type_tac ~cast:t ~applist:al (proof,goal) =
716 let curi,metasenv,_subst,pbo,pty, attrs = proof in
717 let metano,context,ty = CicUtil.lookup_meta goal metasenv in
718 let fresh_meta = ProofEngineHelpers.new_meta_of_proof proof in
720 CicMkImplicit.identity_relocation_list_for_metavariable context in
721 let metasenv' = (fresh_meta,context,t)::metasenv in
722 let proof' = curi,metasenv',_subst,pbo,pty, attrs in
725 (PrimitiveTactics.apply_tac
726 (*~term:(Cic.Appl ((Cic.Cast (Cic.Meta (fresh_meta,irl),t))::al)) *)
727 ~term:(Cic.Appl ((Cic.Meta (fresh_meta,irl))::al))) (* ??? *)
730 proof'',fresh_meta::goals
732 mk_tactic (apply_type_tac ~cast:t ~applist:al)
736 let my_cut ~term:c (proof,goal) =
737 let curi,metasenv,_subst,pbo,pty, attrs = proof in
738 let metano,context,ty = CicUtil.lookup_meta goal metasenv in
739 let fresh_meta = ProofEngineHelpers.new_meta_of_proof proof in
741 CicMkImplicit.identity_relocation_list_for_metavariable context in
742 let metasenv' = (fresh_meta,context,c)::metasenv in
743 let proof' = curi,metasenv',_subst,pbo,pty, attrs in
747 ~cast:(Cic.Prod(Cic.Name "Anonymous",c,CicSubstitution.lift 1 ty))
748 ~applist:[Cic.Meta(fresh_meta,irl)])
751 (* We permute the generated goals to be consistent with Coq *)
754 | he::tl -> proof'',he::fresh_meta::tl
756 mk_tactic (my_cut ~term:c)
759 let exact = PrimitiveTactics.exact_tac;;
762 let tac_use h status =
763 let (proof, goal) = status in
764 debug("Inizio TC_USE\n");
765 let curi,metasenv,_subst,pbo,pty, attrs = proof in
766 let metano,context,ty = CicUtil.lookup_meta goal metasenv in
767 debug ("hname = "^ CicPp.ppterm h.hname ^"\n");
768 debug ("ty = "^ CicPp.ppterm ty^"\n");
771 "Rlt" -> exact ~term:h.hname
772 | "Rle" -> exact ~term:h.hname
773 | "Rgt" -> (Tacticals.then_
774 ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_gt_to_lt)
775 ~continuation:(exact ~term:h.hname))
776 | "Rge" -> (Tacticals.then_
777 ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_ge_to_le)
778 ~continuation:(exact ~term:h.hname))
779 | "eqTLR" -> (Tacticals.then_
780 ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_eqLR_to_le)
781 ~continuation:(exact ~term:h.hname))
782 | "eqTRL" -> (Tacticals.then_
783 ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_eqRL_to_le)
784 ~continuation:(exact ~term:h.hname))
788 mk_tactic (tac_use h)
793 Cic.Appl ( Cic.Const(u,boh)::next) ->
794 (if UriManager.eq u HelmLibraryObjects.Reals.rlt_URI or
795 UriManager.eq u HelmLibraryObjects.Reals.rgt_URI or
796 UriManager.eq u HelmLibraryObjects.Reals.rle_URI or
797 UriManager.eq u HelmLibraryObjects.Reals.rge_URI then true
798 else if UriManager.eq u HelmLibraryObjects.Logic.eq_URI then
799 (match (List.hd next) with
800 Cic.Const (uri,_) when
801 UriManager.eq uri HelmLibraryObjects.Reals.r_URI
808 let list_of_sign s = List.map (fun (x,_,z)->(x,z)) s;;
811 Cic.Appl(Array.to_list a)
814 (* Résolution d'inéquations linéaires dans R *)
815 let rec strip_outer_cast c = match c with
816 | Cic.Cast (c,_) -> strip_outer_cast c
820 (*let find_in_context id context =
821 let rec find_in_context_aux c n =
823 [] -> failwith (id^" not found in context")
824 | a::next -> (match a with
825 Some (Cic.Name(name),_) when name = id -> n
826 (*? magari al posto di _ qualcosaltro?*)
827 | _ -> find_in_context_aux next (n+1))
829 find_in_context_aux context 1
832 (* mi sembra quadratico *)
833 let rec filter_real_hyp context cont =
836 | Some(Cic.Name(h),Cic.Decl(t))::next -> (
837 let n = find_in_context h cont in
838 debug("assegno "^string_of_int n^" a "^CicPp.ppterm t^"\n");
839 [(Cic.Rel(n),t)] @ filter_real_hyp next cont)
840 | a::next -> debug(" no\n"); filter_real_hyp next cont
843 let filter_real_hyp context _ =
844 let rec filter_aux context num =
847 | Some(Cic.Name(h),Cic.Decl(t))::next ->
848 [(Cic.Rel(num),t)] @ filter_aux next (num+1)
849 | a::next -> filter_aux next (num+1)
855 (* lifts everithing at the conclusion level *)
856 let rec superlift c n=
859 | Some(name,Cic.Decl(a))::next ->
860 [Some(name,Cic.Decl(CicSubstitution.lift n a))]@ superlift next (n+1)
861 | Some(name,Cic.Def(a,ty))::next ->
863 Cic.Def((CicSubstitution.lift n a),CicSubstitution.lift n ty))
864 ] @ superlift next (n+1)
865 | _::next -> superlift next (n+1) (*?? ??*)
869 let equality_replace a b =
870 let equality_replace a b status =
871 debug("inizio EQ\n");
872 let module C = Cic in
873 let proof,goal = status in
874 let curi,metasenv,_subst,pbo,pty, attrs = proof in
875 let metano,context,ty = CicUtil.lookup_meta goal metasenv in
876 let a_eq_b = C.Appl [ _eqT ; _R ; a ; b ] in
877 let fresh_meta = ProofEngineHelpers.new_meta_of_proof proof in
879 CicMkImplicit.identity_relocation_list_for_metavariable context in
880 let metasenv' = (fresh_meta,context,a_eq_b)::metasenv in
881 debug("chamo rewrite tac su"^CicPp.ppterm (C.Meta (fresh_meta,irl)));
882 let (proof,goals) = apply_tactic
883 (EqualityTactics.rewrite_simpl_tac
884 ~direction:`LeftToRight
885 ~pattern:(ProofEngineTypes.conclusion_pattern None)
886 (C.Meta (fresh_meta,irl)) [])
887 ((curi,metasenv',_subst,pbo,pty, attrs),goal)
889 let new_goals = fresh_meta::goals in
890 debug("fine EQ -> goals : "^string_of_int( List.length new_goals) ^" = "
891 ^string_of_int( List.length goals)^"+ meta\n");
894 mk_tactic (equality_replace a b)
897 let tcl_fail a (proof,goal) =
899 1 -> raise (ProofEngineTypes.Fail (lazy "fail-tactical"))
900 | _ -> (proof,[goal])
903 (* Galla: moved in variousTactics.ml
904 let assumption_tac (proof,goal)=
905 let curi,metasenv,pbo,pty = proof in
906 let metano,context,ty = CicUtil.lookup_meta goal metasenv in
908 let tac_list = List.map
909 ( fun x -> num := !num + 1;
911 Some(Cic.Name(nm),t) -> (nm,exact ~term:(Cic.Rel(!num)))
912 | _ -> ("fake",tcl_fail 1)
916 Tacticals.first ~tactics:tac_list (proof,goal)
919 (* Galla: moved in negationTactics.ml
920 (* !!!!! fix !!!!!!!!!! *)
921 let contradiction_tac (proof,goal)=
923 (*inutile sia questo che quello prima della chiamata*)
924 ~start:PrimitiveTactics.intros_tac
925 ~continuation:(Tacticals.then_
926 ~start:(VariousTactics.elim_type_tac ~term:_False)
927 ~continuation:(assumption_tac))
932 (* ********************* TATTICA ******************************** *)
934 let rec fourier (s_proof,s_goal)=
935 let s_curi,s_metasenv,_subst,s_pbo,s_pty, attrs = s_proof in
936 let s_metano,s_context,s_ty = CicUtil.lookup_meta s_goal s_metasenv in
937 debug ("invoco fourier_tac sul goal "^string_of_int(s_goal)^" e contesto:\n");
938 debug_pcontext s_context;
940 (* here we need to negate the thesis, but to do this we need to apply the
941 right theoreme,so let's parse our thesis *)
943 let th_to_appl = ref _Rfourier_not_le_gt in
945 Cic.Appl ( Cic.Const(u,boh)::args) ->
947 (if UriManager.eq u HelmLibraryObjects.Reals.rlt_URI then
949 else if UriManager.eq u HelmLibraryObjects.Reals.rle_URI then
951 else if UriManager.eq u HelmLibraryObjects.Reals.rgt_URI then
953 else if UriManager.eq u HelmLibraryObjects.Reals.rge_URI then
955 else failwith "fourier can't be applyed")
956 |_-> failwith "fourier can't be applyed");
957 (* fix maybe strip_outer_cast goes here?? *)
959 (* now let's change our thesis applying the th and put it with hp *)
961 let proof,gl = apply_tactic
963 ~start:(PrimitiveTactics.apply_tac ~term:!th_to_appl)
964 ~continuation:(PrimitiveTactics.intros_tac ()))
967 let goal = if List.length gl = 1 then List.hd gl
968 else failwith "a new goal" in
970 debug ("port la tesi sopra e la nego. contesto :\n");
971 debug_pcontext s_context;
973 (* now we have all the right environment *)
975 let curi,metasenv,_subst,pbo,pty, attrs = proof in
976 let metano,context,ty = CicUtil.lookup_meta goal metasenv in
978 (* now we want to convert hp to inequations, but first we must lift
979 everyting to thesis level, so that a variable has the save Rel(n)
980 in each hp ( needed by ineq1_of_term ) *)
982 (* ? fix if None ?????*)
983 (* fix change superlift with a real name *)
985 let l_context = superlift context 1 in
986 let hyps = filter_real_hyp l_context l_context in
988 debug ("trasformo in diseq. "^ string_of_int (List.length hyps)^" ipotesi\n");
992 (* transform hyps into inequations *)
994 List.iter (fun h -> try (lineq:=(ineq1_of_term h)@(!lineq))
998 debug ("applico fourier a "^ string_of_int (List.length !lineq)^
1001 let res=fourier_lineq (!lineq) in
1002 let tac=ref Tacticals.id_tac in
1004 (print_string "Tactic Fourier fails.\n";flush stdout;
1005 failwith "fourier_tac fails")
1008 match res with (*match res*)
1011 (* in lc we have the coefficient to "reduce" the system *)
1013 print_string "Fourier's method can prove the goal...\n";flush stdout;
1015 debug "I coeff di moltiplicazione rit sono: ";
1019 (fun (h,c) -> if c<>r0 then (lutil:=(h,c)::(!lutil);
1020 (* DBG *)Fourier.print_rational(c);print_string " "(* DBG *))
1022 (List.combine (!lineq) lc);
1024 print_string (" quindi lutil e' lunga "^
1025 string_of_int (List.length (!lutil))^"\n");
1027 (* on construit la combinaison linéaire des inéquation *)
1029 (match (!lutil) with (*match (!lutil) *)
1031 debug ("elem di lutil ");Fourier.print_rational c1;print_string "\n";
1033 let s=ref (h1.hstrict) in
1036 let t1 = ref (Cic.Appl [_Rmult;rational_to_real c1;h1.hleft] ) in
1037 let t2 = ref (Cic.Appl [_Rmult;rational_to_real c1;h1.hright]) in
1039 List.iter (fun (h,c) ->
1040 s:=(!s)||(h.hstrict);
1041 t1:=(Cic.Appl [_Rplus;!t1;Cic.Appl
1042 [_Rmult;rational_to_real c;h.hleft ] ]);
1043 t2:=(Cic.Appl [_Rplus;!t2;Cic.Appl
1044 [_Rmult;rational_to_real c;h.hright] ]))
1047 let ineq=Cic.Appl [(if (!s) then _Rlt else _Rle);!t1;!t2 ] in
1048 let tc=rational_to_real cres in
1051 (* ora ho i termini che descrivono i passi di fourier per risolvere il sistema *)
1053 debug "inizio a costruire tac1\n";
1054 Fourier.print_rational(c1);
1056 let tac1=ref ( mk_tactic (fun status ->
1060 ~start:(mk_tactic (fun status ->
1061 debug ("inizio t1 strict\n");
1062 let curi,metasenv,_subst,pbo,pty, attrs = proof in
1063 let metano,context,ty = CicUtil.lookup_meta goal metasenv in
1064 debug ("th = "^ CicPp.ppterm _Rfourier_lt ^"\n");
1065 debug ("ty = "^ CicPp.ppterm ty^"\n");
1067 (PrimitiveTactics.apply_tac ~term:_Rfourier_lt) status))
1068 ~continuations:[tac_use h1;
1069 tac_zero_inf_pos (rational_to_fraction c1)])
1072 ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_le)
1073 ~continuations:[tac_use h1;tac_zero_inf_pos
1074 (rational_to_fraction c1)]))
1079 List.iter (fun (h,c) ->
1083 tac1:=(Tacticals.thens
1084 ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_lt_lt)
1085 ~continuations:[!tac1;tac_use h;tac_zero_inf_pos
1086 (rational_to_fraction c)]))
1089 Fourier.print_rational(c1);
1090 tac1:=(Tacticals.thens
1091 ~start:(mk_tactic (fun status ->
1092 debug("INIZIO TAC 1 2\n");
1093 let curi,metasenv,_subst,pbo,pty, attrs = proof in
1094 let metano,context,ty = CicUtil.lookup_meta goal metasenv in
1095 debug ("th = "^ CicPp.ppterm _Rfourier_lt_le ^"\n");
1096 debug ("ty = "^ CicPp.ppterm ty^"\n");
1098 (PrimitiveTactics.apply_tac ~term:_Rfourier_lt_le)
1100 ~continuations:[!tac1;tac_use h;tac_zero_inf_pos
1101 (rational_to_fraction c)])))
1105 tac1:=(Tacticals.thens
1106 ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_le_lt)
1107 ~continuations:[!tac1;tac_use h;tac_zero_inf_pos
1108 (rational_to_fraction c)]))
1111 tac1:=(Tacticals.thens
1112 ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_le_le)
1113 ~continuations:[!tac1;tac_use h;tac_zero_inf_pos
1114 (rational_to_fraction c)]))));
1115 s:=(!s)||(h.hstrict)) (* end fun -> *)
1116 lutil;(*end List.iter*)
1120 tac_zero_inf_false goal (rational_to_fraction cres)
1122 tac_zero_infeq_false goal (rational_to_fraction cres)
1124 tac:=(Tacticals.thens
1125 ~start:(my_cut ~term:ineq)
1126 ~continuations:[Tacticals.then_
1127 ~start:( mk_tactic (fun status ->
1128 let (proof, goal) = status in
1129 let curi,metasenv,_subst,pbo,pty, attrs = proof in
1130 let metano,context,ty = CicUtil.lookup_meta goal metasenv in
1132 (ReductionTactics.change_tac
1133 ~pattern:(ProofEngineTypes.conclusion_pattern (Some ty))
1134 (const_lazy_term (Cic.Appl [ _not; ineq])))
1136 ~continuation:(Tacticals.then_
1137 ~start:(PrimitiveTactics.apply_tac ~term:
1138 (if sres then _Rnot_lt_lt else _Rnot_le_le))
1139 ~continuation:(Tacticals.thens
1140 ~start:(mk_tactic (fun status ->
1141 debug("t1 ="^CicPp.ppterm !t1 ^"t2 ="^
1142 CicPp.ppterm !t2 ^"tc="^ CicPp.ppterm tc^"\n");
1143 let r = apply_tactic
1144 (equality_replace (Cic.Appl [_Rminus;!t2;!t1] ) tc)
1147 (match r with (p,gl) ->
1148 debug("eq1 ritorna "^string_of_int(List.length gl)^"\n" ));
1150 ~continuations:[(Tacticals.thens
1151 ~start:(mk_tactic (fun status ->
1152 let r = apply_tactic
1153 (equality_replace (Cic.Appl[_Rinv;_R1]) _R1)
1156 (match r with (p,gl) ->
1157 debug("eq2 ritorna "^string_of_int(List.length gl)^"\n" ));
1160 [PrimitiveTactics.apply_tac ~term:_Rinv_R1;
1162 ~tactics:[Ring.ring_tac; Tacticals.id_tac]
1164 ;(*Tacticals.id_tac*)
1166 ~start:(mk_tactic (fun status ->
1167 let (proof, goal) = status in
1168 let curi,metasenv,_subst,pbo,pty, attrs = proof in
1169 let metano,context,ty = CicUtil.lookup_meta goal metasenv in
1170 (* check if ty is of type *)
1172 debug("qui c'e' gia' l'or "^CicPp.ppterm ty^"\n");
1174 Cic.Prod (Cic.Anonymous,a,b) -> (Cic.Appl [_not;a])
1177 let r = apply_tactic
1178 (ReductionTactics.change_tac
1179 ~pattern:(ProofEngineTypes.conclusion_pattern (Some ty))
1180 (const_lazy_term w1)) status
1182 debug("fine MY_CHNGE\n");
1184 ~continuation:(*PORTINGTacticals.id_tac*)tac2]))
1185 ;(*Tacticals.id_tac*)!tac1]);(*end tac:=*)
1187 |_-> assert false)(*match (!lutil) *)
1188 |_-> assert false); (*match res*)
1189 debug ("finalmente applico tac\n");
1191 let r = apply_tactic !tac (proof,goal) in
1192 debug("\n\n]]]]]]]]]]]]]]]]]) That's all folks ([[[[[[[[[[[[[[[[[[[\n\n");r
1197 let fourier_tac = mk_tactic fourier