1 (* Copyright (C) 2002, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
28 exception TheTypeOfTheCurrentGoalIsAMetaICannotChooseTheRightElimiantionPrinciple
29 exception NotAnInductiveTypeToEliminate
33 fun msg -> if debug then prerr_endline (Lazy.force msg) else ()
36 let inside_obj = function
37 | Cic.InductiveDefinition (type_list,params, nleft, _) ->
38 (type_list,params,nleft)
39 | _ -> raise (Invalid_argument "Errore in inside_obj")
41 let term_to_list = function
43 | _ -> raise (Invalid_argument "Errore in term_to_list")
46 let rec baseuri_of_term = function
47 | Cic.Appl l -> baseuri_of_term (List.hd l)
48 | Cic.MutInd (baseuri, tyno, []) -> baseuri
49 | _ -> raise (Invalid_argument "baseuri_of_term")
51 (* returns DX1 = DX1 -> ... DXn=DXn -> GOALTY *)
52 let rec foo_cut nleft parameters parameters_ty body uri_of_eq =
55 foo_cut (nleft-1) (List.tl parameters) (List.tl parameters_ty) body
62 Cic.Appl[Cic.MutInd (uri_of_eq ,0,[]);
63 (List.hd parameters_ty) ; hd; hd],
64 foo_cut nleft (List.map (CicSubstitution.lift 1) tl)
65 (List.map (CicSubstitution.lift 1) (List.tl parameters_ty))
66 (CicSubstitution.lift 1 body) uri_of_eq )
70 (* from a complex Cic.Prod term, return the list of its components *)
71 let rec get_sort_type term =
73 | Cic.Prod (_,src,tgt) -> (get_sort_type tgt)
78 let rec cut_first n l =
81 | hd::tl -> cut_first (n-1) tl
89 | hd::tl when tl != [] -> hd:: (cut_last tl)
93 (* returns the term to apply*)
94 let foo_appl nleft nright_consno term uri =
98 a := !a @ [(Cic.Implicit None)]
101 for n = 1 to nright_consno do
102 a := !a @ [(Cic.Implicit None)]
104 (* apply i_ind ? ... ? H *)
105 Cic.Appl ([Cic.Const(uri,[])] @ !a @ [Cic.Rel 1])
109 let rec foo_prod nright right_param_tys rightparameters l2 base_rel goalty
110 uri_of_eq rightparameters_ termty isSetType term =
111 match right_param_tys with
112 | hd::tl -> Cic.Prod (
115 [Cic.MutInd(uri_of_eq,0,[]); hd; (List.hd rightparameters);
118 (List.map (CicSubstitution.lift 1) tl)
119 (List.map (CicSubstitution.lift 1) (List.tl rightparameters))
120 (List.map (CicSubstitution.lift 1) l2)
121 base_rel (CicSubstitution.lift 1 goalty) uri_of_eq
122 (List.map (CicSubstitution.lift 1) rightparameters_)
123 (CicSubstitution.lift 1 termty)
124 isSetType (CicSubstitution.lift 1 term))
125 | [] -> ProofEngineReduction.replace_lifting
126 ~equality:(fun _ -> CicUtil.alpha_equivalence)
129 then (rightparameters_ @ [term] )
130 else (rightparameters_ ) )
131 ~with_what: (List.map (CicSubstitution.lift (-1)) l2)
133 (* the same subterm of goalty could be simultaneously sx and dx!*)
136 let rec foo_lambda nright right_param_tys nright_ right_param_tys_
137 rightparameters created_vars base_rel goalty uri_of_eq rightparameters_
138 termty isSetType term =
139 match right_param_tys with
140 | hd::tl -> Cic.Lambda (
141 (Cic.Name ("lambda" ^ (string_of_int nright))),
143 foo_lambda (nright-1)
144 (List.map (CicSubstitution.lift 1) tl) nright_
145 (List.map (CicSubstitution.lift 1) right_param_tys_)
146 (List.map (CicSubstitution.lift 1) rightparameters)
147 (List.map (CicSubstitution.lift 1) (created_vars @ [Cic.Rel 1]))
148 base_rel (CicSubstitution.lift 1 goalty) uri_of_eq
149 (List.map (CicSubstitution.lift 1) rightparameters_)
150 (CicSubstitution.lift 1 termty) isSetType
151 (CicSubstitution.lift 1 term))
152 | [] when isSetType -> Cic.Lambda (
153 (Cic.Name ("lambda" ^ (string_of_int nright))),
154 (ProofEngineReduction.replace_lifting
155 ~equality:(fun _ -> CicUtil.alpha_equivalence)
157 ~what: (rightparameters_ )
158 ~with_what: (List.map (CicSubstitution.lift (-1)) created_vars)
159 ~where:termty), (* type of H with replaced right parameters *)
160 foo_prod nright_ (List.map (CicSubstitution.lift 1) right_param_tys_)
161 (List.map (CicSubstitution.lift 1) rightparameters)
162 (List.map (CicSubstitution.lift 1) (created_vars @ [Cic.Rel 1]))
163 (base_rel+1) (CicSubstitution.lift 1 goalty) uri_of_eq
164 (List.map (CicSubstitution.lift 1) rightparameters_)
165 (CicSubstitution.lift 1 termty) isSetType
166 (CicSubstitution.lift 1 term))
167 | [] -> foo_prod nright_ right_param_tys_ rightparameters created_vars
168 base_rel goalty uri_of_eq rightparameters_
169 termty isSetType term
172 let isSetType paramty = ((Pervasives.compare
173 (get_sort_type paramty)
174 (Cic.Sort Cic.Prop)) != 0)
176 exception EqualityNotDefinedYet
177 let private_inversion_tac ~term =
178 let module T = CicTypeChecker in
179 let module R = CicReduction in
180 let module C = Cic in
181 let module P = PrimitiveTactics in
182 let module PET = ProofEngineTypes in
183 let private_inversion_tac ~term (proof, goal) =
185 (*DEBUG*) debug_print (lazy ("private inversion begins"));
186 let _,metasenv,_subst,_,_, _ = proof in
188 match LibraryObjects.eq_URI () with
189 None -> raise EqualityNotDefinedYet
192 let (_,context,goalty) = CicUtil.lookup_meta goal metasenv in
193 let termty,_ = T.type_of_aux' metasenv context term CicUniv.empty_ugraph in
194 let uri = baseuri_of_term termty in
195 let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in
198 C.MutInd (uri,typeno,exp_named_subst) -> (uri,exp_named_subst,typeno,[])
199 | C.Appl ((C.MutInd (uri,typeno,exp_named_subst))::args) ->
200 (uri,exp_named_subst,typeno,args)
201 | _ -> raise NotAnInductiveTypeToEliminate
203 let buri = UriManager.buri_of_uri uri in
204 let name,nleft,paramty,cons_list =
206 C.InductiveDefinition (tys,_,nleft,_) ->
207 let (name,_,paramty,cons_list) = List.nth tys typeno in
208 (name,nleft,paramty,cons_list)
212 UriManager.uri_of_string (buri ^ "/" ^ name ^ "_ind" ^ ".con")
214 let parameters = (List.tl (term_to_list termty)) in
218 match (T.type_of_aux' metasenv context t CicUniv.empty_ugraph) with
219 (term,graph) -> term))
222 let consno = List.length cons_list in
223 let nright= ((List.length parameters)- nleft) in
224 let isSetType = isSetType paramty in
225 let cut_term = foo_cut nleft parameters
226 parameters_tys goalty uri_of_eq in
227 (*DEBUG*) debug_print (lazy ("cut term " ^ CicPp.ppterm cut_term));
228 debug_print (lazy ("CONTEXT before apply HCUT: " ^
229 (CicMetaSubst.ppcontext ~metasenv [] context )));
230 debug_print (lazy ("termty " ^ CicPp.ppterm termty));
231 (* cut DXn=DXn \to GOAL *)
232 let proof1,gl1 = PET.apply_tactic (P.cut_tac cut_term) (proof,goal) in
233 (* apply Hcut ; reflexivity *)
234 let proof2, gl2 = PET.apply_tactic
236 ~start: (P.apply_tac (C.Rel 1)) (* apply Hcut *)
237 ~continuation: (EqualityTactics.reflexivity_tac)
238 ) (proof1, (List.hd gl1))
240 (*DEBUG*) debug_print (lazy ("after apply HCUT;reflexivity
241 in private inversion"));
242 (* apply (ledx_ind( lambda x. lambda y, ...)) *)
243 let t1,metasenv,_subst,t3,t4, attrs = proof2 in
244 let goal2 = List.hd (List.tl gl1) in
245 let (_,context,_) = CicUtil.lookup_meta goal2 metasenv in
246 (* rightparameters type list *)
247 let rightparam_ty_l = (cut_first nleft parameters_tys) in
248 (* rightparameters list *)
249 let rightparameters= cut_first nleft parameters in
250 let lambda_t = foo_lambda nright rightparam_ty_l nright rightparam_ty_l
251 rightparameters [] nright goalty uri_of_eq rightparameters termty isSetType
253 let t = foo_appl nleft (nright+consno) lambda_t eliminator_uri in
254 debug_print (lazy ("Lambda_t: " ^ (CicPp.ppterm t)));
255 debug_print (lazy ("Term: " ^ (CicPp.ppterm termty)));
256 debug_print (lazy ("Body: " ^ (CicPp.ppterm goalty)));
258 (lazy ("Right param: " ^ (CicPp.ppterm (Cic.Appl rightparameters))));
259 debug_print (lazy ("CONTEXT before refinement: " ^
260 (CicMetaSubst.ppcontext ~metasenv [] context )));
261 (*DEBUG*) debug_print (lazy ("private inversion: term before refinement: " ^
263 let (ref_t,_,metasenv'',_) = CicRefine.type_of_aux' metasenv context t
266 (*DEBUG*) debug_print (lazy ("private inversion: termine after refinement: "
267 ^ CicPp.ppterm ref_t));
268 let proof2 = (t1,metasenv'',_subst,t3,t4, attrs) in
270 let my_apply_tac status =
272 ProofEngineTypes.apply_tactic (P.apply_tac ref_t) status in
273 let patched_new_goals =
274 let (_,metasenv''',_subst,_,_, _) = proof in
275 let new_goals = ProofEngineHelpers.compare_metasenvs
276 ~oldmetasenv:metasenv ~newmetasenv:metasenv''
278 List.filter (function i -> List.exists (function (j,_,_) -> j=i)
279 metasenv''') new_goals @ goals
281 proof,patched_new_goals
283 ProofEngineTypes.mk_tactic my_apply_tac
290 (ReductionTactics.simpl_tac (ProofEngineTypes.conclusion_pattern(None))))
296 ProofEngineTypes.mk_tactic (private_inversion_tac ~term)
300 let inversion_tac ~term =
301 let module T = CicTypeChecker in
302 let module R = CicReduction in
303 let module C = Cic in
304 let module P = PrimitiveTactics in
305 let module PET = ProofEngineTypes in
306 let inversion_tac ~term (proof, goal) =
307 (*DEBUG*) debug_print (lazy ("inversion begins"));
308 let _,metasenv,_subst,_,_, _ = proof in
309 let (_,context,goalty) = CicUtil.lookup_meta goal metasenv in
310 let termty,_ = T.type_of_aux' metasenv context term CicUniv.empty_ugraph in
313 | Cic.MutInd (uri,typeno,_)
314 | Cic.Appl(Cic.MutInd (uri,typeno,_)::_) -> uri,typeno
317 (* let uri = baseuri_of_term termty in *)
318 let obj,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in
319 let name,nleft,arity,cons_list =
321 Cic.InductiveDefinition (tys,_,nleft,_) ->
322 let (name,_,arity,cons_list) = List.nth tys typeno in
323 (name,nleft,arity,cons_list)
326 let buri = UriManager.buri_of_uri uri in
328 UriManager.uri_of_string (buri ^ "/" ^ name ^ "_inv" ^ ".con") in
329 (* arity length = number of parameters plus 1 *)
330 let arity_length = (List.length (term_to_list termty)) in
331 (* Check the existence of any right parameter. *)
332 assert (arity_length > (nleft + 1));
333 let appl_term arity_consno uri =
336 for n = 1 to arity_consno do
337 a := (Cic.Implicit None)::(!a)
339 (* apply i_inv ? ...? H). *)
340 Cic.Appl ([Cic.Const(uri,[])] @ !a @ [term])
342 let t = appl_term (arity_length + (List.length cons_list)) inversor_uri in
343 let (t1,metasenv,_subst,t3,t4, attrs) = proof in
344 let (ref_t,_,metasenv'',_) = CicRefine.type_of_aux' metasenv context t
347 let proof = (t1,metasenv'',_subst,t3,t4, attrs) in
349 ProofEngineTypes.apply_tactic (P.apply_tac ref_t) (proof,goal) in
350 let patched_new_goals =
351 let (_,metasenv''',_subst,_,_, _) = proof3 in
352 let new_goals = ProofEngineHelpers.compare_metasenvs
353 ~oldmetasenv:metasenv ~newmetasenv:metasenv''
355 List.filter (function i -> List.exists (function (j,_,_) -> j=i)
356 metasenv''') new_goals @ gl3
358 (proof3, patched_new_goals)
360 ProofEngineTypes.mk_tactic (inversion_tac ~term)