1 (* Copyright (C) 2002, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
28 open ProofEngineHelpers
31 exception TheTypeOfTheCurrentGoalIsAMetaICannotChooseTheRightElimiantionPrinciple
32 exception NotAnInductiveTypeToEliminate
33 exception WrongUriToVariable of string
35 (* lambda_abstract newmeta ty *)
36 (* returns a triple [bo],[context],[ty'] where *)
37 (* [ty] = Pi/LetIn [context].[ty'] ([context] is a vector!) *)
38 (* and [bo] = Lambda/LetIn [context].(Meta [newmeta]) *)
39 (* So, lambda_abstract is the core of the implementation of *)
40 (* the Intros tactic. *)
41 (* howmany = -1 means Intros, howmany > 0 means Intros n *)
42 let lambda_abstract ?(howmany=(-1)) metasenv context newmeta ty mk_fresh_name =
44 let rec collect_context context howmany ty =
48 CicMkImplicit.identity_relocation_list_for_metavariable context
50 context, ty, (C.Meta (newmeta,irl))
53 C.Cast (te,_) -> collect_context context howmany te
55 let n' = mk_fresh_name metasenv context n ~typ:s in
56 let (context',ty,bo) =
57 collect_context ((Some (n',(C.Decl s)))::context) (howmany - 1) t
59 (context',ty,C.Lambda(n',s,bo))
61 let (context',ty,bo) =
62 collect_context ((Some (n,(C.Def (s,None))))::context) (howmany - 1) t
64 (context',ty,C.LetIn(n,s,bo))
68 CicMkImplicit.identity_relocation_list_for_metavariable context
70 context, t, (C.Meta (newmeta,irl))
72 raise (Fail (lazy "intro(s): not enough products or let-ins"))
74 collect_context context howmany ty
76 let eta_expand metasenv context t arg =
77 let module T = CicTypeChecker in
78 let module S = CicSubstitution in
82 t' when t' = S.lift n arg -> C.Rel (1 + n)
83 | C.Rel m -> if m <= n then C.Rel m else C.Rel (m+1)
84 | C.Var (uri,exp_named_subst) ->
85 let exp_named_subst' = aux_exp_named_subst n exp_named_subst in
86 C.Var (uri,exp_named_subst')
89 List.map (function None -> None | Some t -> Some (aux n t)) l
93 | C.Implicit _ as t -> t
94 | C.Cast (te,ty) -> C.Cast (aux n te, aux n ty)
95 | C.Prod (nn,s,t) -> C.Prod (nn, aux n s, aux (n+1) t)
96 | C.Lambda (nn,s,t) -> C.Lambda (nn, aux n s, aux (n+1) t)
97 | C.LetIn (nn,s,t) -> C.LetIn (nn, aux n s, aux (n+1) t)
98 | C.Appl l -> C.Appl (List.map (aux n) l)
99 | C.Const (uri,exp_named_subst) ->
100 let exp_named_subst' = aux_exp_named_subst n exp_named_subst in
101 C.Const (uri,exp_named_subst')
102 | C.MutInd (uri,i,exp_named_subst) ->
103 let exp_named_subst' = aux_exp_named_subst n exp_named_subst in
104 C.MutInd (uri,i,exp_named_subst')
105 | C.MutConstruct (uri,i,j,exp_named_subst) ->
106 let exp_named_subst' = aux_exp_named_subst n exp_named_subst in
107 C.MutConstruct (uri,i,j,exp_named_subst')
108 | C.MutCase (sp,i,outt,t,pl) ->
109 C.MutCase (sp,i,aux n outt, aux n t,
112 let tylen = List.length fl in
115 (fun (name,i,ty,bo) -> (name, i, aux n ty, aux (n+tylen) bo))
118 C.Fix (i, substitutedfl)
120 let tylen = List.length fl in
123 (fun (name,ty,bo) -> (name, aux n ty, aux (n+tylen) bo))
126 C.CoFix (i, substitutedfl)
127 and aux_exp_named_subst n =
128 List.map (function uri,t -> uri,aux n t)
131 T.type_of_aux' metasenv context arg CicUniv.empty_ugraph (* TASSI: FIXME *)
134 FreshNamesGenerator.mk_fresh_name ~subst:[]
135 metasenv context (Cic.Name "Heta") ~typ:argty
137 (C.Appl [C.Lambda (fresh_name,argty,aux 0 t) ; arg])
139 (*CSC: ma serve solamente la prima delle new_uninst e l'unione delle due!!! *)
140 let classify_metas newmeta in_subst_domain subst_in metasenv =
142 (fun (i,canonical_context,ty) (old_uninst,new_uninst) ->
143 if in_subst_domain i then
144 old_uninst,new_uninst
146 let ty' = subst_in canonical_context ty in
147 let canonical_context' =
149 (fun entry canonical_context' ->
152 Some (n,Cic.Decl s) ->
153 Some (n,Cic.Decl (subst_in canonical_context' s))
154 | Some (n,Cic.Def (s,None)) ->
155 Some (n,Cic.Def ((subst_in canonical_context' s),None))
157 | Some (n,Cic.Def (bo,Some ty)) ->
161 (subst_in canonical_context' bo,
162 Some (subst_in canonical_context' ty)))
164 entry'::canonical_context'
165 ) canonical_context []
168 ((i,canonical_context',ty')::old_uninst),new_uninst
170 old_uninst,((i,canonical_context',ty')::new_uninst)
173 (* Useful only inside apply_tac *)
175 generalize_exp_named_subst_with_fresh_metas context newmeta uri exp_named_subst
177 let module C = Cic in
179 let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in
180 CicUtil.params_of_obj o
182 let exp_named_subst_diff,new_fresh_meta,newmetasenvfragment,exp_named_subst'=
183 let next_fresh_meta = ref newmeta in
184 let newmetasenvfragment = ref [] in
185 let exp_named_subst_diff = ref [] in
191 let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in
193 C.Variable (_,_,ty,_,_) ->
194 CicSubstitution.subst_vars !exp_named_subst_diff ty
195 | _ -> raise (WrongUriToVariable (UriManager.string_of_uri uri))
197 (* CSC: patch to generate ?1 : ?2 : Type in place of ?1 : Type to simulate ?1 :< Type
199 C.Sort (C.Type _) as s -> (* TASSI: ?? *)
200 let fresh_meta = !next_fresh_meta in
201 let fresh_meta' = fresh_meta + 1 in
202 next_fresh_meta := !next_fresh_meta + 2 ;
203 let subst_item = uri,C.Meta (fresh_meta',[]) in
204 newmetasenvfragment :=
205 (fresh_meta,[],C.Sort (C.Type (CicUniv.fresh()))) ::
207 (fresh_meta',[],C.Meta (fresh_meta,[])) :: !newmetasenvfragment ;
208 exp_named_subst_diff := !exp_named_subst_diff @ [subst_item] ;
209 subst_item::(aux (tl,[]))
213 CicMkImplicit.identity_relocation_list_for_metavariable context
215 let subst_item = uri,C.Meta (!next_fresh_meta,irl) in
216 newmetasenvfragment :=
217 (!next_fresh_meta,context,ty)::!newmetasenvfragment ;
218 exp_named_subst_diff := !exp_named_subst_diff @ [subst_item] ;
219 incr next_fresh_meta ;
220 subst_item::(aux (tl,[]))(*)*)
221 | uri::tl1,((uri',_) as s)::tl2 ->
222 assert (UriManager.eq uri uri') ;
224 | [],_ -> assert false
226 let exp_named_subst' = aux (params,exp_named_subst) in
227 !exp_named_subst_diff,!next_fresh_meta,
228 List.rev !newmetasenvfragment, exp_named_subst'
230 new_fresh_meta,newmetasenvfragment,exp_named_subst',exp_named_subst_diff
233 let new_metasenv_and_unify_and_t newmeta' metasenv' context term' ty termty goal_arity =
234 let (consthead,newmetasenv,arguments,_) =
235 saturate_term newmeta' metasenv' context termty goal_arity in
236 let subst,newmetasenv',_ =
237 CicUnification.fo_unif newmetasenv context consthead ty CicUniv.empty_ugraph
240 if List.length arguments = 0 then term' else Cic.Appl (term'::arguments)
244 let rec count_prods context ty =
245 match CicReduction.whd context ty with
246 Cic.Prod (n,s,t) -> 1 + count_prods (Some (n,Cic.Decl s)::context) t
249 let apply_tac_verbose_with_subst ~term (proof, goal) =
250 (* Assumption: The term "term" must be closed in the current context *)
251 let module T = CicTypeChecker in
252 let module R = CicReduction in
253 let module C = Cic in
254 let (_,metasenv,_,_) = proof in
255 let metano,context,ty = CicUtil.lookup_meta goal metasenv in
256 let newmeta = new_meta_of_proof ~proof in
257 let exp_named_subst_diff,newmeta',newmetasenvfragment,term' =
259 C.Var (uri,exp_named_subst) ->
260 let newmeta',newmetasenvfragment,exp_named_subst',exp_named_subst_diff =
261 generalize_exp_named_subst_with_fresh_metas context newmeta uri
264 exp_named_subst_diff,newmeta',newmetasenvfragment,
265 C.Var (uri,exp_named_subst')
266 | C.Const (uri,exp_named_subst) ->
267 let newmeta',newmetasenvfragment,exp_named_subst',exp_named_subst_diff =
268 generalize_exp_named_subst_with_fresh_metas context newmeta uri
271 exp_named_subst_diff,newmeta',newmetasenvfragment,
272 C.Const (uri,exp_named_subst')
273 | C.MutInd (uri,tyno,exp_named_subst) ->
274 let newmeta',newmetasenvfragment,exp_named_subst',exp_named_subst_diff =
275 generalize_exp_named_subst_with_fresh_metas context newmeta uri
278 exp_named_subst_diff,newmeta',newmetasenvfragment,
279 C.MutInd (uri,tyno,exp_named_subst')
280 | C.MutConstruct (uri,tyno,consno,exp_named_subst) ->
281 let newmeta',newmetasenvfragment,exp_named_subst',exp_named_subst_diff =
282 generalize_exp_named_subst_with_fresh_metas context newmeta uri
285 exp_named_subst_diff,newmeta',newmetasenvfragment,
286 C.MutConstruct (uri,tyno,consno,exp_named_subst')
287 | _ -> [],newmeta,[],term
289 let metasenv' = metasenv@newmetasenvfragment in
291 CicTypeChecker.type_of_aux' metasenv' context term' CicUniv.empty_ugraph
294 CicSubstitution.subst_vars exp_named_subst_diff termty in
295 let goal_arity = count_prods context ty in
296 let subst,newmetasenv',t =
297 let rec add_one_argument n =
299 new_metasenv_and_unify_and_t newmeta' metasenv' context term' ty
301 with CicUnification.UnificationFailure _ when n > 0 ->
302 add_one_argument (n - 1)
304 add_one_argument goal_arity
306 let in_subst_domain i = List.exists (function (j,_) -> i=j) subst in
307 let apply_subst = CicMetaSubst.apply_subst subst in
308 let old_uninstantiatedmetas,new_uninstantiatedmetas =
309 (* subst_in doesn't need the context. Hence the underscore. *)
310 let subst_in _ = CicMetaSubst.apply_subst subst in
311 classify_metas newmeta in_subst_domain subst_in newmetasenv'
313 let bo' = apply_subst t in
314 let newmetasenv'' = new_uninstantiatedmetas@old_uninstantiatedmetas in
316 (* if we just apply the subtitution, the type is irrelevant:
317 we may use Implicit, since it will be dropped *)
318 CicMetaSubst.apply_subst ((metano,(context,bo',Cic.Implicit None))::subst)
320 let (newproof, newmetasenv''') =
321 subst_meta_and_metasenv_in_proof proof metano subst_in newmetasenv''
323 (((metano,(context,bo',Cic.Implicit None))::subst)(* subst_in *), (* ALB *)
325 List.map (function (i,_,_) -> i) new_uninstantiatedmetas))
329 let apply_tac_verbose_with_subst ~term status =
331 (* apply_tac_verbose ~term status *)
332 apply_tac_verbose_with_subst ~term status
333 (* TODO cacciare anche altre eccezioni? *)
335 | CicUnification.UnificationFailure msg
336 | CicTypeChecker.TypeCheckerFailure msg ->
340 let apply_tac_verbose ~term status =
341 let subst, status = apply_tac_verbose_with_subst ~term status in
342 (CicMetaSubst.apply_subst subst), status
344 let apply_tac ~term status = snd (apply_tac_verbose ~term status)
346 (* TODO per implementare i tatticali e' necessario che tutte le tattiche
347 sollevino _solamente_ Fail *)
348 let apply_tac ~term =
349 let apply_tac ~term status =
351 apply_tac ~term status
352 (* TODO cacciare anche altre eccezioni? *)
354 | CicUnification.UnificationFailure msg
355 | CicTypeChecker.TypeCheckerFailure msg ->
358 mk_tactic (apply_tac ~term)
360 let intros_tac ?howmany ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) ()=
362 ?(mk_fresh_name_callback = (FreshNamesGenerator.mk_fresh_name ~subst:[])) ()
365 let module C = Cic in
366 let module R = CicReduction in
367 let (_,metasenv,_,_) = proof in
368 let metano,context,ty = CicUtil.lookup_meta goal metasenv in
369 let newmeta = new_meta_of_proof ~proof in
370 let (context',ty',bo') =
371 lambda_abstract ?howmany metasenv context newmeta ty mk_fresh_name_callback
374 subst_meta_in_proof proof metano bo' [newmeta,context',ty']
376 (newproof, [newmeta])
378 mk_tactic (intros_tac ~mk_fresh_name_callback ())
380 let cut_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) term =
382 ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[])
385 let module C = Cic in
386 let curi,metasenv,pbo,pty = proof in
387 let metano,context,ty = CicUtil.lookup_meta goal metasenv in
388 let newmeta1 = new_meta_of_proof ~proof in
389 let newmeta2 = newmeta1 + 1 in
391 mk_fresh_name_callback metasenv context (Cic.Name "Hcut") ~typ:term in
392 let context_for_newmeta1 =
393 (Some (fresh_name,C.Decl term))::context in
395 CicMkImplicit.identity_relocation_list_for_metavariable
399 CicMkImplicit.identity_relocation_list_for_metavariable context
401 let newmeta1ty = CicSubstitution.lift 1 ty in
404 [C.Lambda (fresh_name,term,C.Meta (newmeta1,irl1)) ;
405 C.Meta (newmeta2,irl2)]
408 subst_meta_in_proof proof metano bo'
409 [newmeta2,context,term; newmeta1,context_for_newmeta1,newmeta1ty];
411 (newproof, [newmeta1 ; newmeta2])
413 mk_tactic (cut_tac ~mk_fresh_name_callback term)
415 let letin_tac ?(mk_fresh_name_callback=FreshNamesGenerator.mk_fresh_name ~subst:[]) term =
417 ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[])
420 let module C = Cic in
421 let curi,metasenv,pbo,pty = proof in
422 let metano,context,ty = CicUtil.lookup_meta goal metasenv in
423 let _,_ = (* TASSI: FIXME *)
424 CicTypeChecker.type_of_aux' metasenv context term CicUniv.empty_ugraph in
425 let newmeta = new_meta_of_proof ~proof in
427 mk_fresh_name_callback metasenv context (Cic.Name "Hletin") ~typ:term in
428 let context_for_newmeta =
429 (Some (fresh_name,C.Def (term,None)))::context in
431 CicMkImplicit.identity_relocation_list_for_metavariable
434 let newmetaty = CicSubstitution.lift 1 ty in
435 let bo' = C.LetIn (fresh_name,term,C.Meta (newmeta,irl)) in
438 proof metano bo'[newmeta,context_for_newmeta,newmetaty]
440 (newproof, [newmeta])
442 mk_tactic (letin_tac ~mk_fresh_name_callback term)
444 (** functional part of the "exact" tactic *)
445 let exact_tac ~term =
446 let exact_tac ~term (proof, goal) =
447 (* Assumption: the term bo must be closed in the current context *)
448 let (_,metasenv,_,_) = proof in
449 let metano,context,ty = CicUtil.lookup_meta goal metasenv in
450 let module T = CicTypeChecker in
451 let module R = CicReduction in
452 let ty_term,u = T.type_of_aux' metasenv context term CicUniv.empty_ugraph in
453 let b,_ = R.are_convertible context ty_term ty u in (* TASSI: FIXME *)
456 let (newproof, metasenv') =
457 subst_meta_in_proof proof metano term [] in
461 raise (Fail (lazy "The type of the provided term is not the one expected."))
463 mk_tactic (exact_tac ~term)
465 (* not really "primitive" tactics .... *)
467 let elim_tac ~term (proof, goal) =
468 let module T = CicTypeChecker in
469 let module U = UriManager in
470 let module R = CicReduction in
471 let module C = Cic in
472 let (curi,metasenv,proofbo,proofty) = proof in
473 let metano,context,ty = CicUtil.lookup_meta goal metasenv in
474 let termty,_ = T.type_of_aux' metasenv context term CicUniv.empty_ugraph in
475 let (termty,metasenv',arguments,fresh_meta) =
476 ProofEngineHelpers.saturate_term
477 (ProofEngineHelpers.new_meta_of_proof proof) metasenv context termty 0 in
478 let term = if arguments = [] then term else Cic.Appl (term::arguments) in
479 let uri,exp_named_subst,typeno,args =
481 C.MutInd (uri,typeno,exp_named_subst) -> (uri,exp_named_subst,typeno,[])
482 | C.Appl ((C.MutInd (uri,typeno,exp_named_subst))::args) ->
483 (uri,exp_named_subst,typeno,args)
484 | _ -> raise NotAnInductiveTypeToEliminate
487 let buri = U.buri_of_uri uri in
489 let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in
491 C.InductiveDefinition (tys,_,_,_) ->
492 let (name,_,_,_) = List.nth tys typeno in
496 let ty_ty,_ = T.type_of_aux' metasenv' context ty CicUniv.empty_ugraph in
499 C.Sort C.Prop -> "_ind"
500 | C.Sort C.Set -> "_rec"
501 | C.Sort C.CProp -> "_rec"
502 | C.Sort (C.Type _)-> "_rect"
503 | C.Meta (_,_) -> raise TheTypeOfTheCurrentGoalIsAMetaICannotChooseTheRightElimiantionPrinciple
506 U.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con")
508 let eliminator_ref = C.Const (eliminator_uri,exp_named_subst) in
510 T.type_of_aux' metasenv' context eliminator_ref CicUniv.empty_ugraph in
511 let rec find_args_no =
513 C.Prod (_,_,t) -> 1 + find_args_no t
514 | C.Cast (s,_) -> find_args_no s
515 | C.LetIn (_,_,t) -> 0 + find_args_no t
518 let args_no = find_args_no ety in
520 let rec make_tl base_case =
523 | n -> (C.Implicit None)::(make_tl base_case (n - 1))
525 C.Appl (eliminator_ref :: make_tl term (args_no - 1))
527 let refined_term,_,metasenv'',_ =
528 CicRefine.type_of_aux' metasenv' context term_to_refine
532 ProofEngineHelpers.compare_metasenvs
533 ~oldmetasenv:metasenv ~newmetasenv:metasenv''
535 let proof' = curi,metasenv'',proofbo,proofty in
536 let proof'', new_goals' =
537 apply_tactic (apply_tac ~term:refined_term) (proof',goal)
539 (* The apply_tactic can have closed some of the new_goals *)
540 let patched_new_goals =
541 let (_,metasenv''',_,_) = proof'' in
543 (function i -> List.exists (function (j,_,_) -> j=i) metasenv'''
544 ) new_goals @ new_goals'
546 proof'', patched_new_goals
548 mk_tactic (elim_tac ~term)
551 let elim_intros_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[])
553 Tacticals.then_ ~start:(elim_tac ~term:what)
554 ~continuation:(intros_tac ~mk_fresh_name_callback ?howmany:depth ())
557 (* The simplification is performed only on the conclusion *)
558 let elim_intros_simpl_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[])
560 Tacticals.then_ ~start:(elim_tac ~term:what)
563 ~start:(intros_tac ~mk_fresh_name_callback ?howmany:depth ())
565 [ReductionTactics.simpl_tac
566 ~pattern:(ProofEngineTypes.conclusion_pattern None)])