1 (* Copyright (C) 2004, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
28 let absurd = NegationTactics.absurd_tac
29 let apply = PrimitiveTactics.apply_tac
30 let applyP = PrimitiveTactics.applyP_tac
31 let applyS = Auto.applyS_tac
32 let assumption = VariousTactics.assumption_tac
33 let auto = Auto.auto_tac
34 let cases_intros = PrimitiveTactics.cases_intros_tac
35 let change = ReductionTactics.change_tac
36 let clear = ProofEngineStructuralRules.clear
37 let clearbody = ProofEngineStructuralRules.clearbody
38 let constructor = IntroductionTactics.constructor_tac
39 let contradiction = NegationTactics.contradiction_tac
40 let cut = PrimitiveTactics.cut_tac
41 let decompose = EliminationTactics.decompose_tac
42 let demodulate = Auto.demodulate_tac
43 let destruct = DestructTactic.destruct_tac
44 let elim_intros = PrimitiveTactics.elim_intros_tac
45 let elim_intros_simpl = PrimitiveTactics.elim_intros_simpl_tac
46 let elim_type = EliminationTactics.elim_type_tac
47 let exact = PrimitiveTactics.exact_tac
48 let exists = IntroductionTactics.exists_tac
49 let fail = Tacticals.fail_tac
50 let fold = ReductionTactics.fold_tac
51 let fourier = FourierR.fourier_tac
52 let fwd_simpl = FwdSimplTactic.fwd_simpl_tac
53 let generalize = PrimitiveTactics.generalize_tac
54 let id = Tacticals.id_tac
55 let intros = PrimitiveTactics.intros_tac
56 let inversion = Inversion.inversion_tac
57 let lapply = FwdSimplTactic.lapply_tac
58 let left = IntroductionTactics.left_tac
59 let letin = PrimitiveTactics.letin_tac
60 let normalize = ReductionTactics.normalize_tac
61 let reflexivity = Setoids.setoid_reflexivity_tac
62 let replace = EqualityTactics.replace_tac
63 let rewrite = EqualityTactics.rewrite_tac
64 let rewrite_simpl = EqualityTactics.rewrite_simpl_tac
65 let right = IntroductionTactics.right_tac
66 let ring = Ring.ring_tac
67 let simpl = ReductionTactics.simpl_tac
68 let solve_rewrite = Auto.solve_rewrite_tac
69 let split = IntroductionTactics.split_tac
70 let symmetry = EqualityTactics.symmetry_tac
71 let transitivity = EqualityTactics.transitivity_tac
72 let unfold = ReductionTactics.unfold_tac
73 let whd = ReductionTactics.whd_tac
74 let compose = Compose.compose_tac
77 let _ = CloseCoercionGraph.close_coercion_graph;;