1 (* Copyright (C) 2002, HELM Team.
3 * This file is part of HELM, an Hypertextual, Electronic
4 * Library of Mathematics, developed at the Computer Science
5 * Department, University of Bologna, Italy.
7 * HELM is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
12 * HELM is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with HELM; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 * For details, see the HELM World-Wide-Web page,
23 * http://cs.unibo.it/helm/.
26 module Codomain = struct
28 let compare = Pervasives.compare
30 module S = Set.Make(Codomain)
31 module TI = Discrimination_tree.Make(Discrimination_tree.CicIndexable)(S)
37 let get_candidates univ ty =
38 S.elements (TI.retrieve_unifiables univ ty)
41 let in_universe univ ty =
42 let candidates = get_candidates univ ty in
46 | Some found -> Some found
49 CicTypeChecker.type_of_aux' [] [] cand CicUniv.oblivion_ugraph in
51 CicReduction.are_convertible [] candty ty CicUniv.oblivion_ugraph in
52 if same then Some cand else None
56 let rec unfold context = function
57 | Cic.Prod(name,s,t) ->
58 let t' = unfold ((Some (name,Cic.Decl s))::context) t in
60 | t -> ProofEngineReduction.unfold context t
62 let rec collapse_head_metas t =
64 | Cic.Appl([]) -> assert false
66 let a' = collapse_head_metas a in
68 | Cic.Meta(n,m) -> Cic.Meta(n,m)
70 let l' = List.map collapse_head_metas l in
79 | Cic.MutConstruct _ -> t
86 | Cic.CoFix _ -> Cic.Meta(-1,[])
89 let rec dummies_of_coercions =
91 | Cic.Appl (c::l) when CoercDb.is_a_coercion c <> None ->
94 let l' = List.map dummies_of_coercions l in Cic.Appl l'
95 | Cic.Lambda(n,s,t) ->
96 let s' = dummies_of_coercions s in
97 let t' = dummies_of_coercions t in
100 let s' = dummies_of_coercions s in
101 let t' = dummies_of_coercions t in
103 | Cic.LetIn(n,s,ty,t) ->
104 let s' = dummies_of_coercions s in
105 let ty' = dummies_of_coercions ty in
106 let t' = dummies_of_coercions t in
107 Cic.LetIn (n,s',ty',t')
108 | Cic.MutCase _ -> Cic.Meta (-1,[])
113 let rec head remove_coercions t =
115 if remove_coercions then dummies_of_coercions t
117 let rec aux = function
119 CicSubstitution.subst (Cic.Meta (-1,[])) (aux t)
121 in collapse_head_metas (clean_up (aux t))
125 let index univ key term =
126 (* flexible terms are not indexed *)
127 if key = Cic.Meta(-1,[]) then univ
129 ((*prerr_endline("ADD: "^CicPp.ppterm key^" |-> "^CicPp.ppterm term);*)
130 TI.index univ key term)
133 let keys context ty =
135 [head true ty; head true (unfold context ty)]
136 with ProofEngineTypes.Fail _ -> [head true ty]
138 let key term = head false term;;
140 let index_term_and_unfolded_term univ context t ty =
141 let key = head true ty in
142 let univ = index univ key t in
144 let key = head true (unfold context ty) in
146 with ProofEngineTypes.Fail _ -> univ
149 let index_local_term univ context t ty =
150 let key = head true ty in
151 let univ = index univ key t in
152 let key1 = head false ty in
154 if key<>key1 then index univ key1 t else univ in
156 let key = head true (unfold context ty) in
158 with ProofEngineTypes.Fail _ -> univ
162 let index_list univ context terms_and_types =
164 (fun acc (term,ty) ->
165 index_term_and_unfolded_term acc context term ty)
170 let remove univ context term ty =
171 let key = head true ty in
172 let univ = TI.remove_index univ key term in
174 let key = head true (unfold context ty) in
175 TI.remove_index univ key term
176 with ProofEngineTypes.Fail _ -> univ
178 let remove_uri univ uri =
179 let term = CicUtil.term_of_uri uri in
180 let ty,_ = CicTypeChecker.type_of_aux' [] [] term CicUniv.oblivion_ugraph in
181 remove univ [] term ty