2 ||M|| This file is part of HELM, an Hypertextual, Electronic
3 ||A|| Library of Mathematics, developed at the Computer Science
4 ||T|| Department, University of Bologna, Italy.
6 ||T|| HELM is free software; you can redistribute it and/or
7 ||A|| modify it under the terms of the GNU General Public License
8 \ / version 2 or (at your option) any later version.
9 \ / This software is distributed as is, NO WARRANTY.
10 V_______________________________________________________________ *)
19 (* qualified identifier: uri, name, qualifiers *)
20 type qid = D.uri * D.id * D.id list
22 type context = Y.attrs * D.term list
24 type environment = context H.t
26 type context_node = qid option (* context node: None = root *)
29 henv: environment; (* optimized global environment *)
30 path: D.id list; (* current section path *)
31 hcnt: environment; (* optimized context *)
32 node: context_node; (* current context node *)
33 nodes: context_node list; (* context node list *)
34 line: int; (* line number *)
35 mk_uri:Y.uri_generator (* uri generator *)
38 type resolver = Local of int
41 let henv_size, hcnt_size = 7000, 4300 (* hash tables initial sizes *)
43 (* Internal functions *******************************************************)
45 let initial_status mk_uri = {
46 path = []; node = None; nodes = []; line = 1; mk_uri = mk_uri;
47 henv = H.create henv_size; hcnt = H.create hcnt_size
50 let empty_cnt = [], []
52 let add_abst (a, ws) id w =
53 Y.Name (id, true) :: a, w :: ws
55 let lenv_of_cnt (a, ws) =
56 D.push C.start D.empty_lenv a (D.Abst ws)
58 let mk_lref f i j k = f (D.TLRef ([Y.Apix k], i, j))
60 let id_of_name (id, _, _) = id
62 let mk_qid f st id path =
63 let str = String.concat "/" path in
64 let str = Filename.concat str id in
65 let f str = f (U.uri_of_string str, id, path) in
68 let uri_of_qid (uri, _, _) = uri
70 let complete_qid f st (id, is_local, qs) =
71 let f path = C.list_rev_append (mk_qid f st id) path ~tail:qs in
72 let rec skip f = function
73 | phd :: ptl, qshd :: _ when phd = qshd -> f ptl
74 | _ :: ptl, _ :: _ -> skip f (ptl, qs)
77 if is_local then f st.path else skip f (st.path, qs)
79 let relax_qid f st (_, id, path) =
81 | _ :: tl -> C.list_rev (mk_qid f st id) tl
86 let relax_opt_qid f st = function
88 | Some qid -> let f qid = f (Some qid) in relax_qid f st qid
90 let resolve_gref err f st qid =
91 try let cnt = H.find st.henv (uri_of_qid qid) in f qid cnt
92 with Not_found -> err ()
94 let resolve_gref_relaxed f st qid =
95 let rec err () = relax_qid (resolve_gref err f st) st qid in
96 resolve_gref err f st qid
98 let get_cnt err f st = function
100 | Some qid as node ->
101 try let cnt = H.find st.hcnt (uri_of_qid qid) in f cnt
102 with Not_found -> err node
104 let get_cnt_relaxed f st =
105 let rec err node = relax_opt_qid (get_cnt err f st) st node in
106 get_cnt err f st st.node
108 let rec xlate_term f st lenv = function
110 let f h = f (D.TSort ([], h)) in
111 if s then f 0 else f 1
113 let f vv tt = f (D.TAppl ([], [vv], tt)) in
114 let f vv = xlate_term (f vv) st lenv t in
115 xlate_term f st lenv v
116 | A.Abst (name, w, t) ->
118 let a, b = [Y.Name (name, true)], (D.Abst [ww]) in
119 let f tt = f (D.TBind (a, b, tt)) in
120 let f lenv = xlate_term f st lenv t in
123 xlate_term f st lenv w
124 | A.GRef (name, args) ->
126 let map1 f = xlate_term f st lenv in
127 let map2 f = function
128 | Y.Name (id, _) -> D.resolve_lref Cps.err (mk_lref f) id lenv
132 let f args = f (D.TAppl ([], args, D.TGRef ([], uri_of_qid qid))) in
133 let f a = C.list_rev_map_append f map2 a ~tail in
134 C.list_sub_strict f a args
136 C.list_map f map1 args
138 let g qid = resolve_gref_relaxed g st qid in
139 let err () = complete_qid g st name in
140 D.resolve_lref err (mk_lref f) (id_of_name name) lenv
142 let xlate_entity err f st = function
143 | A.Section (Some (_, name)) ->
144 err {st with path = name :: st.path; nodes = st.node :: st.nodes}
146 begin match st.path, st.nodes with
147 | _ :: ptl, nhd :: ntl ->
148 err {st with path = ptl; node = nhd; nodes = ntl}
152 err {st with node = None}
153 | A.Context (Some name) ->
154 let f name = err {st with node = Some name} in
155 complete_qid f st name
156 | A.Block (name, w) ->
159 let lenv = lenv_of_cnt cnt in
161 H.add st.hcnt (uri_of_qid qid) (add_abst cnt name ww);
162 err {st with node = Some qid}
164 xlate_term f st lenv w
168 complete_qid f st (name, true, [])
169 | A.Decl (name, w) ->
172 let lenv = lenv_of_cnt cnt in
175 H.add st.henv (uri_of_qid qid) cnt;
176 let b = Y.Abst (D.TBind (a, D.Abst ws, ww)) in
177 let entity = [Y.Mark st.line], uri_of_qid qid, b in
178 f {st with line = succ st.line} entity
180 xlate_term f st lenv w
182 complete_qid f st (name, true, [])
185 | A.Def (name, w, trans, v) ->
188 let lenv = lenv_of_cnt cnt in
191 H.add st.henv (uri_of_qid qid) cnt;
192 let b = Y.Abbr (D.TBind (a, D.Abst ws, D.TCast ([], ww, vv))) in
194 if trans then [Y.Mark st.line] else [Y.Mark st.line; Y.Priv]
196 let entity = a, uri_of_qid qid, b in
197 f {st with line = succ st.line} entity
199 let f ww = xlate_term (f ww) st lenv v in
200 xlate_term f st lenv w
202 complete_qid f st (name, true, [])
206 (* Interface functions ******************************************************)
208 let initial_status mk_uri =
209 initial_status mk_uri
211 let drg_of_aut = xlate_entity