]> matita.cs.unibo.it Git - helm.git/blob - helm/software/matita/applyTransformation.ml
Generation of inductive and inversion principles for mutual
[helm.git] / helm / software / matita / applyTransformation.ml
1 (* Copyright (C) 2000-2002, HELM Team.
2  * 
3  * This file is part of HELM, an Hypertextual, Electronic
4  * Library of Mathematics, developed at the Computer Science
5  * Department, University of Bologna, Italy.
6  * 
7  * HELM is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version 2
10  * of the License, or (at your option) any later version.
11  * 
12  * HELM is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with HELM; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
20  * MA  02111-1307, USA.
21  * 
22  * For details, see the HELM World-Wide-Web page,
23  * http://cs.unibo.it/helm/.
24  *)
25
26 (***************************************************************************)
27 (*                                                                         *)
28 (*                               PROJECT HELM                              *)
29 (*                                                                         *)
30 (*                   Andrea Asperti <asperti@cs.unibo.it>                  *)
31 (*                                21/11/2003                               *)
32 (*                                                                         *)
33 (*                                                                         *)
34 (***************************************************************************)
35
36 (* $Id$ *)
37
38 let mpres_document pres_box =
39   Xml.add_xml_declaration (CicNotationPres.print_box pres_box)
40
41 let mml_of_cic_sequent metasenv sequent =
42   let unsh_sequent,(asequent,ids_to_terms,
43     ids_to_father_ids,ids_to_inner_sorts,ids_to_hypotheses)
44   =
45     Cic2acic.asequent_of_sequent metasenv sequent
46   in
47   let content_sequent = Acic2content.map_sequent asequent in 
48   let pres_sequent = 
49     (Sequent2pres.sequent2pres ~ids_to_inner_sorts content_sequent)
50   in
51   let xmlpres = mpres_document pres_sequent in
52   (Xml2Gdome.document_of_xml DomMisc.domImpl xmlpres,
53    unsh_sequent,
54    (asequent,
55     (ids_to_terms,ids_to_father_ids,ids_to_hypotheses,ids_to_inner_sorts)))
56
57 let mml_of_cic_object obj =
58   let (annobj, ids_to_terms, ids_to_father_ids, ids_to_inner_sorts,
59     ids_to_inner_types, ids_to_conjectures, ids_to_hypotheses)
60   =
61     Cic2acic.acic_object_of_cic_object obj
62   in
63   let content = 
64     Acic2content.annobj2content ~ids_to_inner_sorts ~ids_to_inner_types annobj
65   in
66   let pres = Content2pres.content2pres ~ids_to_inner_sorts content in
67   let xmlpres = mpres_document pres in
68   let mathml = Xml2Gdome.document_of_xml DomMisc.domImpl xmlpres in
69   (mathml,(annobj,
70    (ids_to_terms, ids_to_father_ids, ids_to_conjectures, ids_to_hypotheses,
71   ids_to_inner_sorts,ids_to_inner_types)))
72
73 let txt_of_cic_sequent_conclusion size metasenv sequent = 
74   let _,(asequent,_,_,ids_to_inner_sorts,_) = 
75     Cic2acic.asequent_of_sequent metasenv sequent 
76   in
77   let _,_,_,t = Acic2content.map_sequent asequent in 
78   let t, ids_to_uris = TermAcicContent.ast_of_acic ids_to_inner_sorts t in
79   let t = TermContentPres.pp_ast t in
80   let t = CicNotationPres.render ids_to_uris t in
81   BoxPp.render_to_string (function x::_ -> x | _ -> assert false) size t
82
83 let txt_of_cic_term size metasenv context t = 
84   let fake_sequent = (-1,context,t) in
85   txt_of_cic_sequent_conclusion size metasenv fake_sequent 
86