1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 set "baseuri" "cic:/matita/CoRN-Decl/complex/NRootCC".
21 (* $Id: NRootCC.v,v 1.9 2004/04/23 10:00:55 lcf Exp $ *)
23 (*#* printing sqrt_Half %\ensuremath{\sqrt{\frac12}}% *)
25 (*#* printing sqrt_I %\ensuremath{\sqrt{\imath}}% *)
27 (*#* printing nroot_I %\ensuremath{\sqrt[n]{\imath}}% *)
29 (*#* printing nroot_minus_I %\ensuremath{\sqrt[n]{-\imath}}% *)
31 include "complex/CComplex.ma".
33 (*#* * Roots of Complex Numbers
35 Properties of non-zero complex numbers
42 inline "cic:/CoRN/complex/NRootCC/cc_ap_zero.con".
44 inline "cic:/CoRN/complex/NRootCC/C_cc_ap_zero.con".
56 inline "cic:/CoRN/complex/NRootCC/imag_to_real.con".
62 (*#* ** Roots of the imaginary unit *)
68 inline "cic:/CoRN/complex/NRootCC/sqrt_Half.con".
70 inline "cic:/CoRN/complex/NRootCC/sqrt_I.con".
72 inline "cic:/CoRN/complex/NRootCC/sqrt_I_nexp.con".
74 inline "cic:/CoRN/complex/NRootCC/nroot_I_nexp_aux.con".
76 inline "cic:/CoRN/complex/NRootCC/nroot_I.con".
78 inline "cic:/CoRN/complex/NRootCC/nroot_I_nexp.con".
81 Hint Resolve nroot_I_nexp: algebra.
84 inline "cic:/CoRN/complex/NRootCC/nroot_minus_I.con".
86 inline "cic:/CoRN/complex/NRootCC/nroot_minus_I_nexp.con".
92 (*#* ** Roots of complex numbers *)
98 (*#* We define the nth root of a complex number with a non zero imaginary part.
102 Section NRootCC_1_ap_real
106 %\begin{convention}% Let [a,b : IR] and [b_ : (b [#] Zero)].
107 Define [c2 := a[^]2[+]b[^]2], [c := sqrt c2], [a'2 := (c[+]a) [*]Half],
108 [a' := sqrt a'2], [b'2 := (c[-]a) [*]Half] and [b' := sqrt b'2].
112 alias id "a" = "cic:/CoRN/complex/NRootCC/NRootCC_1/NRootCC_1_ap_real/a.var".
114 alias id "b" = "cic:/CoRN/complex/NRootCC/NRootCC_1/NRootCC_1_ap_real/b.var".
116 alias id "b_" = "cic:/CoRN/complex/NRootCC/NRootCC_1/NRootCC_1_ap_real/b_.var".
120 inline "cic:/CoRN/complex/NRootCC/NRootCC_1/NRootCC_1_ap_real/c2.con" "NRootCC_1__NRootCC_1_ap_real__".
124 inline "cic:/CoRN/complex/NRootCC/nrCC1_c2pos.con".
128 inline "cic:/CoRN/complex/NRootCC/NRootCC_1/NRootCC_1_ap_real/c.con" "NRootCC_1__NRootCC_1_ap_real__".
130 inline "cic:/CoRN/complex/NRootCC/NRootCC_1/NRootCC_1_ap_real/a'2.con" "NRootCC_1__NRootCC_1_ap_real__".
134 inline "cic:/CoRN/complex/NRootCC/nrCC1_a'2pos.con".
138 inline "cic:/CoRN/complex/NRootCC/NRootCC_1/NRootCC_1_ap_real/a'.con" "NRootCC_1__NRootCC_1_ap_real__".
140 inline "cic:/CoRN/complex/NRootCC/NRootCC_1/NRootCC_1_ap_real/b'2.con" "NRootCC_1__NRootCC_1_ap_real__".
144 inline "cic:/CoRN/complex/NRootCC/nrCC1_b'2pos.con".
148 inline "cic:/CoRN/complex/NRootCC/NRootCC_1/NRootCC_1_ap_real/b'.con" "NRootCC_1__NRootCC_1_ap_real__".
152 inline "cic:/CoRN/complex/NRootCC/nrCC1_a3.con".
154 inline "cic:/CoRN/complex/NRootCC/nrCC1_a4.con".
157 Hint Resolve nrCC1_a4: algebra.
160 inline "cic:/CoRN/complex/NRootCC/nrCC1_a5.con".
162 inline "cic:/CoRN/complex/NRootCC/nrCC1_a6.con".
164 inline "cic:/CoRN/complex/NRootCC/nrCC1_a6'.con".
167 Hint Resolve nrCC1_a5: algebra.
170 inline "cic:/CoRN/complex/NRootCC/nrCC1_a7_upper.con".
172 inline "cic:/CoRN/complex/NRootCC/nrCC1_a7_lower.con".
175 Hint Resolve nrCC1_a3 nrCC1_a7_upper nrCC1_a7_lower: algebra.
178 inline "cic:/CoRN/complex/NRootCC/nrootCC_1_upper.con".
180 inline "cic:/CoRN/complex/NRootCC/nrootCC_1_lower.con".
182 inline "cic:/CoRN/complex/NRootCC/nrootCC_1_ap_real.con".
185 End NRootCC_1_ap_real
188 (*#* We now define the nth root of a complex number with a non zero real part.
192 Section NRootCC_1_ap_imag
196 %\begin{convention}% Let [a,b : IR] and [a_ : (a [#] Zero)] and define
197 [c' := (a[+I*]b) [*][--]II := a'[+I*]b'].
201 alias id "a" = "cic:/CoRN/complex/NRootCC/NRootCC_1/NRootCC_1_ap_imag/a.var".
203 alias id "b" = "cic:/CoRN/complex/NRootCC/NRootCC_1/NRootCC_1_ap_imag/b.var".
205 alias id "a_" = "cic:/CoRN/complex/NRootCC/NRootCC_1/NRootCC_1_ap_imag/a_.var".
209 inline "cic:/CoRN/complex/NRootCC/NRootCC_1/NRootCC_1_ap_imag/c'.con" "NRootCC_1__NRootCC_1_ap_imag__".
211 inline "cic:/CoRN/complex/NRootCC/NRootCC_1/NRootCC_1_ap_imag/a'.con" "NRootCC_1__NRootCC_1_ap_imag__".
213 inline "cic:/CoRN/complex/NRootCC/NRootCC_1/NRootCC_1_ap_imag/b'.con" "NRootCC_1__NRootCC_1_ap_imag__".
218 Hint Resolve sqrt_I_nexp: algebra.
221 inline "cic:/CoRN/complex/NRootCC/nrootCC_1_ap_imag.con".
224 End NRootCC_1_ap_imag
227 (*#* We now define the roots of arbitrary non zero complex numbers. *)
229 inline "cic:/CoRN/complex/NRootCC/nrootCC_1.con".
240 %\begin{convention}% Let [n : nat] and [c,z : CC] and [c_:(c [#] Zero)].
244 alias id "n" = "cic:/CoRN/complex/NRootCC/NRootCC_2/n.var".
246 alias id "c" = "cic:/CoRN/complex/NRootCC/NRootCC_2/c.var".
248 alias id "z" = "cic:/CoRN/complex/NRootCC/NRootCC_2/z.var".
250 alias id "c_" = "cic:/CoRN/complex/NRootCC/NRootCC_2/c_.var".
252 inline "cic:/CoRN/complex/NRootCC/nrootCC_2'.con".
254 inline "cic:/CoRN/complex/NRootCC/nrootCC_2.con".
264 inline "cic:/CoRN/complex/NRootCC/Im_poly.con".
266 inline "cic:/CoRN/complex/NRootCC/nrCC3_a1.con".
268 inline "cic:/CoRN/complex/NRootCC/nrCC3_a2.con".
271 %\begin{convention}% Let [a,b : IR], [b_ : (b [#] Zero)] and [n : nat].
275 alias id "a" = "cic:/CoRN/complex/NRootCC/NRootCC_3/a.var".
277 alias id "b" = "cic:/CoRN/complex/NRootCC/NRootCC_3/b.var".
279 alias id "b_" = "cic:/CoRN/complex/NRootCC/NRootCC_3/b_.var".
281 alias id "n" = "cic:/CoRN/complex/NRootCC/NRootCC_3/n.var".
283 inline "cic:/CoRN/complex/NRootCC/nrCC3_poly''.con".
285 inline "cic:/CoRN/complex/NRootCC/nrCC3_a3.con".
287 inline "cic:/CoRN/complex/NRootCC/nrCC3_a4.con".
289 inline "cic:/CoRN/complex/NRootCC/nrCC3_a5.con".
291 inline "cic:/CoRN/complex/NRootCC/nrCC3_a6.con".
293 inline "cic:/CoRN/complex/NRootCC/nrCC3_poly'.con".
296 Hint Resolve nrCC3_a3: algebra.
299 inline "cic:/CoRN/complex/NRootCC/nrCC3_a7.con".
301 inline "cic:/CoRN/complex/NRootCC/nrCC3_a8.con".
304 Hint Resolve nth_coeff_p_mult_c_: algebra.
308 Hint Resolve nrCC3_a6: algebra.
311 inline "cic:/CoRN/complex/NRootCC/nrCC3_a9.con".
313 inline "cic:/CoRN/complex/NRootCC/nrootCC_3_poly.con".
316 Hint Resolve nrCC3_a1 nrCC3_a7: algebra.
319 inline "cic:/CoRN/complex/NRootCC/nrootCC_3_.con".
322 Hint Resolve nrootCC_3_: algebra.
326 Hint Resolve calculate_Im: algebra.
329 inline "cic:/CoRN/complex/NRootCC/nrootCC_3.con".
332 Hint Resolve nrCC3_a2: algebra.
336 Hint Resolve nrCC3_a9: algebra.
339 inline "cic:/CoRN/complex/NRootCC/nrootCC_3_degree.con".
350 %\begin{convention}% Let [c:IR], [n:nat] and [n_:(lt (0) n)].
354 alias id "c" = "cic:/CoRN/complex/NRootCC/NRootCC_3'/c.var".
356 alias id "n" = "cic:/CoRN/complex/NRootCC/NRootCC_3'/n.var".
358 alias id "n_" = "cic:/CoRN/complex/NRootCC/NRootCC_3'/n_.var".
360 inline "cic:/CoRN/complex/NRootCC/nrootCC_3'_poly.con".
362 inline "cic:/CoRN/complex/NRootCC/nrootCC_3'.con".
364 inline "cic:/CoRN/complex/NRootCC/nrootCC_3'_degree.con".
375 Section NRootCC_4_ap_real
379 %\begin{convention}% Let [a,b : IR], [b_ : (b [#] Zero)], [n : nat] and
380 [n_:(odd n)]; define [c := a[+I*]b].
384 alias id "a" = "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_real/a.var".
386 alias id "b" = "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_real/b.var".
388 alias id "b_" = "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_real/b_.var".
390 alias id "n" = "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_real/n.var".
392 alias id "n_" = "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_real/n_.var".
396 inline "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_real/c.con" "NRootCC_4__NRootCC_4_ap_real__".
401 Section NRootCC_4_solutions
405 Hint Resolve nrootCC_3: algebra.
408 inline "cic:/CoRN/complex/NRootCC/nrCC4_a1.con".
411 %\begin{convention}% Let [r2',c2 : IR] and [r2'_ : (r2' [#] Zero)].
415 alias id "r2'" = "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_real/NRootCC_4_solutions/r2'.var".
417 alias id "c2" = "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_real/NRootCC_4_solutions/c2.var".
419 alias id "r2'_" = "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_real/NRootCC_4_solutions/r2'_.var".
422 Hint Resolve nrootCC_3': algebra.
425 inline "cic:/CoRN/complex/NRootCC/nrCC4_a1'.con".
428 End NRootCC_4_solutions
432 Section NRootCC_4_equations
436 %\begin{convention}% Let [r,y2 : IR] be such that
437 [(r[+I*]One) [^]n[*] (CC_conj c) [-] (r[+I*][--]One) [^]n[*]c [=] Zero]
438 and [(y2[*] (r[^] (2) [+]One)) [^]n [=] a[^] (2) [+]b[^] (2)].
442 alias id "r" = "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_real/NRootCC_4_equations/r.var".
444 alias id "r_property" = "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_real/NRootCC_4_equations/r_property.var".
446 alias id "y2" = "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_real/NRootCC_4_equations/y2.var".
448 alias id "y2_property" = "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_real/NRootCC_4_equations/y2_property.var".
450 inline "cic:/CoRN/complex/NRootCC/nrCC4_a2.con".
452 inline "cic:/CoRN/complex/NRootCC/nrCC4_a3.con".
454 inline "cic:/CoRN/complex/NRootCC/nrCC4_a4.con".
456 inline "cic:/CoRN/complex/NRootCC/nrCC4_y.con".
458 inline "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_real/NRootCC_4_equations/y.con" "NRootCC_4__NRootCC_4_ap_real__NRootCC_4_equations__".
460 inline "cic:/CoRN/complex/NRootCC/nrCC4_x.con".
462 inline "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_real/NRootCC_4_equations/x.con" "NRootCC_4__NRootCC_4_ap_real__NRootCC_4_equations__".
464 inline "cic:/CoRN/complex/NRootCC/nrCC4_a5.con".
466 inline "cic:/CoRN/complex/NRootCC/nrCC4_a6.con".
468 inline "cic:/CoRN/complex/NRootCC/nrCC4_z.con".
470 inline "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_real/NRootCC_4_equations/z.con" "NRootCC_4__NRootCC_4_ap_real__NRootCC_4_equations__".
472 inline "cic:/CoRN/complex/NRootCC/nrCC4_a7.con".
475 Hint Resolve nrCC4_a6: algebra.
478 inline "cic:/CoRN/complex/NRootCC/nrCC4_a8.con".
480 inline "cic:/CoRN/complex/NRootCC/nrCC4_a9.con".
483 End NRootCC_4_equations
486 inline "cic:/CoRN/complex/NRootCC/nrCC4_a10.con".
488 inline "cic:/CoRN/complex/NRootCC/nrootCC_4_ap_real.con".
491 End NRootCC_4_ap_real
495 Section NRootCC_4_ap_imag
499 %\begin{convention}% Let [a,b : IR] and [n : nat] with [a [#] Zero]
500 and [(odd n)]; define [c' := (a[+I*]b) [*]II := a'[+I*]b'].
504 alias id "a" = "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_imag/a.var".
506 alias id "b" = "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_imag/b.var".
508 alias id "a_" = "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_imag/a_.var".
510 alias id "n" = "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_imag/n.var".
512 alias id "n_" = "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_imag/n_.var".
516 inline "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_imag/c'.con" "NRootCC_4__NRootCC_4_ap_imag__".
518 inline "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_imag/a'.con" "NRootCC_4__NRootCC_4_ap_imag__".
520 inline "cic:/CoRN/complex/NRootCC/NRootCC_4/NRootCC_4_ap_imag/b'.con" "NRootCC_4__NRootCC_4_ap_imag__".
524 inline "cic:/CoRN/complex/NRootCC/nrootCC_4_ap_real'.con".
527 Hint Resolve nroot_minus_I_nexp: algebra.
530 inline "cic:/CoRN/complex/NRootCC/nrootCC_4_ap_imag.con".
533 End NRootCC_4_ap_imag
536 inline "cic:/CoRN/complex/NRootCC/nrootCC_4.con".
542 (*#* Finally, the general definition of nth root. *)
548 inline "cic:/CoRN/complex/NRootCC/nrCC_5a2.con".
550 inline "cic:/CoRN/complex/NRootCC/nrCC_5a3.con".
553 Hint Resolve nrCC_5a3: algebra.
557 %\begin{convention}% Let [c : CC] with [c [#] Zero].
561 alias id "c" = "cic:/CoRN/complex/NRootCC/NRootCC_5/c.var".
563 alias id "c_" = "cic:/CoRN/complex/NRootCC/NRootCC_5/c_.var".
565 inline "cic:/CoRN/complex/NRootCC/nrCC_5a4.con".
567 inline "cic:/CoRN/complex/NRootCC/nrootCC_5.con".
573 (*#* Final definition *)
575 inline "cic:/CoRN/complex/NRootCC/CnrootCC.con".