]> matita.cs.unibo.it Git - helm.git/blob - helm/software/matita/contribs/LAMBDA-TYPES/Level-1/Base/ext/arith.ma
last problem elegantly resolved!
[helm.git] / helm / software / matita / contribs / LAMBDA-TYPES / Level-1 / Base / ext / arith.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 (* This file was automatically generated: do not edit *********************)
16
17 set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/Base/ext/arith".
18
19 include "ext/preamble.ma".
20
21 theorem nat_dec:
22  \forall (n1: nat).(\forall (n2: nat).(or (eq nat n1 n2) ((eq nat n1 n2) \to 
23 (\forall (P: Prop).P))))
24 \def
25  \lambda (n1: nat).(nat_ind (\lambda (n: nat).(\forall (n2: nat).(or (eq nat 
26 n n2) ((eq nat n n2) \to (\forall (P: Prop).P))))) (\lambda (n2: 
27 nat).(nat_ind (\lambda (n: nat).(or (eq nat O n) ((eq nat O n) \to (\forall 
28 (P: Prop).P)))) (or_introl (eq nat O O) ((eq nat O O) \to (\forall (P: 
29 Prop).P)) (refl_equal nat O)) (\lambda (n: nat).(\lambda (_: (or (eq nat O n) 
30 ((eq nat O n) \to (\forall (P: Prop).P)))).(or_intror (eq nat O (S n)) ((eq 
31 nat O (S n)) \to (\forall (P: Prop).P)) (\lambda (H0: (eq nat O (S 
32 n))).(\lambda (P: Prop).(let H1 \def (eq_ind nat O (\lambda (ee: nat).(match 
33 ee in nat return (\lambda (_: nat).Prop) with [O \Rightarrow True | (S _) 
34 \Rightarrow False])) I (S n) H0) in (False_ind P H1))))))) n2)) (\lambda (n: 
35 nat).(\lambda (H: ((\forall (n2: nat).(or (eq nat n n2) ((eq nat n n2) \to 
36 (\forall (P: Prop).P)))))).(\lambda (n2: nat).(nat_ind (\lambda (n0: nat).(or 
37 (eq nat (S n) n0) ((eq nat (S n) n0) \to (\forall (P: Prop).P)))) (or_intror 
38 (eq nat (S n) O) ((eq nat (S n) O) \to (\forall (P: Prop).P)) (\lambda (H0: 
39 (eq nat (S n) O)).(\lambda (P: Prop).(let H1 \def (eq_ind nat (S n) (\lambda 
40 (ee: nat).(match ee in nat return (\lambda (_: nat).Prop) with [O \Rightarrow 
41 False | (S _) \Rightarrow True])) I O H0) in (False_ind P H1))))) (\lambda 
42 (n0: nat).(\lambda (H0: (or (eq nat (S n) n0) ((eq nat (S n) n0) \to (\forall 
43 (P: Prop).P)))).(or_ind (eq nat n n0) ((eq nat n n0) \to (\forall (P: 
44 Prop).P)) (or (eq nat (S n) (S n0)) ((eq nat (S n) (S n0)) \to (\forall (P: 
45 Prop).P))) (\lambda (H1: (eq nat n n0)).(let H2 \def (eq_ind_r nat n0 
46 (\lambda (n3: nat).(or (eq nat (S n) n3) ((eq nat (S n) n3) \to (\forall (P: 
47 Prop).P)))) H0 n H1) in (eq_ind nat n (\lambda (n3: nat).(or (eq nat (S n) (S 
48 n3)) ((eq nat (S n) (S n3)) \to (\forall (P: Prop).P)))) (or_introl (eq nat 
49 (S n) (S n)) ((eq nat (S n) (S n)) \to (\forall (P: Prop).P)) (refl_equal nat 
50 (S n))) n0 H1))) (\lambda (H1: (((eq nat n n0) \to (\forall (P: 
51 Prop).P)))).(or_intror (eq nat (S n) (S n0)) ((eq nat (S n) (S n0)) \to 
52 (\forall (P: Prop).P)) (\lambda (H2: (eq nat (S n) (S n0))).(\lambda (P: 
53 Prop).(let H3 \def (f_equal nat nat (\lambda (e: nat).(match e in nat return 
54 (\lambda (_: nat).nat) with [O \Rightarrow n | (S n3) \Rightarrow n3])) (S n) 
55 (S n0) H2) in (let H4 \def (eq_ind_r nat n0 (\lambda (n3: nat).((eq nat n n3) 
56 \to (\forall (P0: Prop).P0))) H1 n H3) in (let H5 \def (eq_ind_r nat n0 
57 (\lambda (n3: nat).(or (eq nat (S n) n3) ((eq nat (S n) n3) \to (\forall (P0: 
58 Prop).P0)))) H0 n H3) in (H4 (refl_equal nat n) P)))))))) (H n0)))) n2)))) 
59 n1).
60
61 theorem simpl_plus_r:
62  \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((eq nat (plus m n) 
63 (plus p n)) \to (eq nat m p))))
64 \def
65  \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (H: (eq nat 
66 (plus m n) (plus p n))).(plus_reg_l n m p (eq_ind_r nat (plus m n) (\lambda 
67 (n0: nat).(eq nat n0 (plus n p))) (eq_ind_r nat (plus p n) (\lambda (n0: 
68 nat).(eq nat n0 (plus n p))) (sym_eq nat (plus n p) (plus p n) (plus_comm n 
69 p)) (plus m n) H) (plus n m) (plus_comm n m)))))).
70
71 theorem minus_plus_r:
72  \forall (m: nat).(\forall (n: nat).(eq nat (minus (plus m n) n) m))
73 \def
74  \lambda (m: nat).(\lambda (n: nat).(eq_ind_r nat (plus n m) (\lambda (n0: 
75 nat).(eq nat (minus n0 n) m)) (minus_plus n m) (plus m n) (plus_comm m n))).
76
77 theorem plus_permute_2_in_3:
78  \forall (x: nat).(\forall (y: nat).(\forall (z: nat).(eq nat (plus (plus x 
79 y) z) (plus (plus x z) y))))
80 \def
81  \lambda (x: nat).(\lambda (y: nat).(\lambda (z: nat).(eq_ind_r nat (plus x 
82 (plus y z)) (\lambda (n: nat).(eq nat n (plus (plus x z) y))) (eq_ind_r nat 
83 (plus z y) (\lambda (n: nat).(eq nat (plus x n) (plus (plus x z) y))) (eq_ind 
84 nat (plus (plus x z) y) (\lambda (n: nat).(eq nat n (plus (plus x z) y))) 
85 (refl_equal nat (plus (plus x z) y)) (plus x (plus z y)) (plus_assoc_reverse 
86 x z y)) (plus y z) (plus_comm y z)) (plus (plus x y) z) (plus_assoc_reverse x 
87 y z)))).
88
89 theorem plus_permute_2_in_3_assoc:
90  \forall (n: nat).(\forall (h: nat).(\forall (k: nat).(eq nat (plus (plus n 
91 h) k) (plus n (plus k h)))))
92 \def
93  \lambda (n: nat).(\lambda (h: nat).(\lambda (k: nat).(eq_ind_r nat (plus 
94 (plus n k) h) (\lambda (n0: nat).(eq nat n0 (plus n (plus k h)))) (eq_ind_r 
95 nat (plus (plus n k) h) (\lambda (n0: nat).(eq nat (plus (plus n k) h) n0)) 
96 (refl_equal nat (plus (plus n k) h)) (plus n (plus k h)) (plus_assoc n k h)) 
97 (plus (plus n h) k) (plus_permute_2_in_3 n h k)))).
98
99 theorem plus_O:
100  \forall (x: nat).(\forall (y: nat).((eq nat (plus x y) O) \to (land (eq nat 
101 x O) (eq nat y O))))
102 \def
103  \lambda (x: nat).(nat_ind (\lambda (n: nat).(\forall (y: nat).((eq nat (plus 
104 n y) O) \to (land (eq nat n O) (eq nat y O))))) (\lambda (y: nat).(\lambda 
105 (H: (eq nat (plus O y) O)).(conj (eq nat O O) (eq nat y O) (refl_equal nat O) 
106 H))) (\lambda (n: nat).(\lambda (_: ((\forall (y: nat).((eq nat (plus n y) O) 
107 \to (land (eq nat n O) (eq nat y O)))))).(\lambda (y: nat).(\lambda (H0: (eq 
108 nat (plus (S n) y) O)).(let H1 \def (match H0 in eq return (\lambda (n0: 
109 nat).(\lambda (_: (eq ? ? n0)).((eq nat n0 O) \to (land (eq nat (S n) O) (eq 
110 nat y O))))) with [refl_equal \Rightarrow (\lambda (H1: (eq nat (plus (S n) 
111 y) O)).(let H2 \def (eq_ind nat (plus (S n) y) (\lambda (e: nat).(match e in 
112 nat return (\lambda (_: nat).Prop) with [O \Rightarrow False | (S _) 
113 \Rightarrow True])) I O H1) in (False_ind (land (eq nat (S n) O) (eq nat y 
114 O)) H2)))]) in (H1 (refl_equal nat O))))))) x).
115
116 theorem minus_Sx_SO:
117  \forall (x: nat).(eq nat (minus (S x) (S O)) x)
118 \def
119  \lambda (x: nat).(eq_ind nat x (\lambda (n: nat).(eq nat n x)) (refl_equal 
120 nat x) (minus x O) (minus_n_O x)).
121
122 theorem eq_nat_dec:
123  \forall (i: nat).(\forall (j: nat).(or (not (eq nat i j)) (eq nat i j)))
124 \def
125  \lambda (i: nat).(nat_ind (\lambda (n: nat).(\forall (j: nat).(or (not (eq 
126 nat n j)) (eq nat n j)))) (\lambda (j: nat).(nat_ind (\lambda (n: nat).(or 
127 (not (eq nat O n)) (eq nat O n))) (or_intror (not (eq nat O O)) (eq nat O O) 
128 (refl_equal nat O)) (\lambda (n: nat).(\lambda (_: (or (not (eq nat O n)) (eq 
129 nat O n))).(or_introl (not (eq nat O (S n))) (eq nat O (S n)) (O_S n)))) j)) 
130 (\lambda (n: nat).(\lambda (H: ((\forall (j: nat).(or (not (eq nat n j)) (eq 
131 nat n j))))).(\lambda (j: nat).(nat_ind (\lambda (n0: nat).(or (not (eq nat 
132 (S n) n0)) (eq nat (S n) n0))) (or_introl (not (eq nat (S n) O)) (eq nat (S 
133 n) O) (sym_not_eq nat O (S n) (O_S n))) (\lambda (n0: nat).(\lambda (_: (or 
134 (not (eq nat (S n) n0)) (eq nat (S n) n0))).(or_ind (not (eq nat n n0)) (eq 
135 nat n n0) (or (not (eq nat (S n) (S n0))) (eq nat (S n) (S n0))) (\lambda 
136 (H1: (not (eq nat n n0))).(or_introl (not (eq nat (S n) (S n0))) (eq nat (S 
137 n) (S n0)) (not_eq_S n n0 H1))) (\lambda (H1: (eq nat n n0)).(or_intror (not 
138 (eq nat (S n) (S n0))) (eq nat (S n) (S n0)) (f_equal nat nat S n n0 H1))) (H 
139 n0)))) j)))) i).
140
141 theorem neq_eq_e:
142  \forall (i: nat).(\forall (j: nat).(\forall (P: Prop).((((not (eq nat i j)) 
143 \to P)) \to ((((eq nat i j) \to P)) \to P))))
144 \def
145  \lambda (i: nat).(\lambda (j: nat).(\lambda (P: Prop).(\lambda (H: (((not 
146 (eq nat i j)) \to P))).(\lambda (H0: (((eq nat i j) \to P))).(let o \def 
147 (eq_nat_dec i j) in (or_ind (not (eq nat i j)) (eq nat i j) P H H0 o)))))).
148
149 theorem le_false:
150  \forall (m: nat).(\forall (n: nat).(\forall (P: Prop).((le m n) \to ((le (S 
151 n) m) \to P))))
152 \def
153  \lambda (m: nat).(nat_ind (\lambda (n: nat).(\forall (n0: nat).(\forall (P: 
154 Prop).((le n n0) \to ((le (S n0) n) \to P))))) (\lambda (n: nat).(\lambda (P: 
155 Prop).(\lambda (_: (le O n)).(\lambda (H0: (le (S n) O)).(let H1 \def (match 
156 H0 in le return (\lambda (n0: nat).(\lambda (_: (le ? n0)).((eq nat n0 O) \to 
157 P))) with [le_n \Rightarrow (\lambda (H1: (eq nat (S n) O)).(let H2 \def 
158 (eq_ind nat (S n) (\lambda (e: nat).(match e in nat return (\lambda (_: 
159 nat).Prop) with [O \Rightarrow False | (S _) \Rightarrow True])) I O H1) in 
160 (False_ind P H2))) | (le_S m0 H1) \Rightarrow (\lambda (H2: (eq nat (S m0) 
161 O)).((let H3 \def (eq_ind nat (S m0) (\lambda (e: nat).(match e in nat return 
162 (\lambda (_: nat).Prop) with [O \Rightarrow False | (S _) \Rightarrow True])) 
163 I O H2) in (False_ind ((le (S n) m0) \to P) H3)) H1))]) in (H1 (refl_equal 
164 nat O))))))) (\lambda (n: nat).(\lambda (H: ((\forall (n0: nat).(\forall (P: 
165 Prop).((le n n0) \to ((le (S n0) n) \to P)))))).(\lambda (n0: nat).(nat_ind 
166 (\lambda (n1: nat).(\forall (P: Prop).((le (S n) n1) \to ((le (S n1) (S n)) 
167 \to P)))) (\lambda (P: Prop).(\lambda (H0: (le (S n) O)).(\lambda (_: (le (S 
168 O) (S n))).(let H2 \def (match H0 in le return (\lambda (n1: nat).(\lambda 
169 (_: (le ? n1)).((eq nat n1 O) \to P))) with [le_n \Rightarrow (\lambda (H2: 
170 (eq nat (S n) O)).(let H3 \def (eq_ind nat (S n) (\lambda (e: nat).(match e 
171 in nat return (\lambda (_: nat).Prop) with [O \Rightarrow False | (S _) 
172 \Rightarrow True])) I O H2) in (False_ind P H3))) | (le_S m0 H2) \Rightarrow 
173 (\lambda (H3: (eq nat (S m0) O)).((let H4 \def (eq_ind nat (S m0) (\lambda 
174 (e: nat).(match e in nat return (\lambda (_: nat).Prop) with [O \Rightarrow 
175 False | (S _) \Rightarrow True])) I O H3) in (False_ind ((le (S n) m0) \to P) 
176 H4)) H2))]) in (H2 (refl_equal nat O)))))) (\lambda (n1: nat).(\lambda (_: 
177 ((\forall (P: Prop).((le (S n) n1) \to ((le (S n1) (S n)) \to P))))).(\lambda 
178 (P: Prop).(\lambda (H1: (le (S n) (S n1))).(\lambda (H2: (le (S (S n1)) (S 
179 n))).(H n1 P (le_S_n n n1 H1) (le_S_n (S n1) n H2))))))) n0)))) m).
180
181 theorem le_Sx_x:
182  \forall (x: nat).((le (S x) x) \to (\forall (P: Prop).P))
183 \def
184  \lambda (x: nat).(\lambda (H: (le (S x) x)).(\lambda (P: Prop).(let H0 \def 
185 le_Sn_n in (False_ind P (H0 x H))))).
186
187 theorem minus_le:
188  \forall (x: nat).(\forall (y: nat).(le (minus x y) x))
189 \def
190  \lambda (x: nat).(nat_ind (\lambda (n: nat).(\forall (y: nat).(le (minus n 
191 y) n))) (\lambda (_: nat).(le_n O)) (\lambda (n: nat).(\lambda (H: ((\forall 
192 (y: nat).(le (minus n y) n)))).(\lambda (y: nat).(match y in nat return 
193 (\lambda (n0: nat).(le (minus (S n) n0) (S n))) with [O \Rightarrow (le_n (S 
194 n)) | (S n0) \Rightarrow (le_S (minus n n0) n (H n0))])))) x).
195
196 theorem le_plus_minus_sym:
197  \forall (n: nat).(\forall (m: nat).((le n m) \to (eq nat m (plus (minus m n) 
198 n))))
199 \def
200  \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le n m)).(eq_ind_r nat 
201 (plus n (minus m n)) (\lambda (n0: nat).(eq nat m n0)) (le_plus_minus n m H) 
202 (plus (minus m n) n) (plus_comm (minus m n) n)))).
203
204 theorem le_minus_minus:
205  \forall (x: nat).(\forall (y: nat).((le x y) \to (\forall (z: nat).((le y z) 
206 \to (le (minus y x) (minus z x))))))
207 \def
208  \lambda (x: nat).(\lambda (y: nat).(\lambda (H: (le x y)).(\lambda (z: 
209 nat).(\lambda (H0: (le y z)).(plus_le_reg_l x (minus y x) (minus z x) 
210 (eq_ind_r nat y (\lambda (n: nat).(le n (plus x (minus z x)))) (eq_ind_r nat 
211 z (\lambda (n: nat).(le y n)) H0 (plus x (minus z x)) (le_plus_minus_r x z 
212 (le_trans x y z H H0))) (plus x (minus y x)) (le_plus_minus_r x y H))))))).
213
214 theorem le_minus_plus:
215  \forall (z: nat).(\forall (x: nat).((le z x) \to (\forall (y: nat).(eq nat 
216 (minus (plus x y) z) (plus (minus x z) y)))))
217 \def
218  \lambda (z: nat).(nat_ind (\lambda (n: nat).(\forall (x: nat).((le n x) \to 
219 (\forall (y: nat).(eq nat (minus (plus x y) n) (plus (minus x n) y)))))) 
220 (\lambda (x: nat).(\lambda (H: (le O x)).(let H0 \def (match H in le return 
221 (\lambda (n: nat).(\lambda (_: (le ? n)).((eq nat n x) \to (\forall (y: 
222 nat).(eq nat (minus (plus x y) O) (plus (minus x O) y)))))) with [le_n 
223 \Rightarrow (\lambda (H0: (eq nat O x)).(eq_ind nat O (\lambda (n: 
224 nat).(\forall (y: nat).(eq nat (minus (plus n y) O) (plus (minus n O) y)))) 
225 (\lambda (y: nat).(sym_eq nat (plus (minus O O) y) (minus (plus O y) O) 
226 (minus_n_O (plus O y)))) x H0)) | (le_S m H0) \Rightarrow (\lambda (H1: (eq 
227 nat (S m) x)).(eq_ind nat (S m) (\lambda (n: nat).((le O m) \to (\forall (y: 
228 nat).(eq nat (minus (plus n y) O) (plus (minus n O) y))))) (\lambda (_: (le O 
229 m)).(\lambda (y: nat).(refl_equal nat (plus (minus (S m) O) y)))) x H1 H0))]) 
230 in (H0 (refl_equal nat x))))) (\lambda (z0: nat).(\lambda (H: ((\forall (x: 
231 nat).((le z0 x) \to (\forall (y: nat).(eq nat (minus (plus x y) z0) (plus 
232 (minus x z0) y))))))).(\lambda (x: nat).(nat_ind (\lambda (n: nat).((le (S 
233 z0) n) \to (\forall (y: nat).(eq nat (minus (plus n y) (S z0)) (plus (minus n 
234 (S z0)) y))))) (\lambda (H0: (le (S z0) O)).(\lambda (y: nat).(let H1 \def 
235 (match H0 in le return (\lambda (n: nat).(\lambda (_: (le ? n)).((eq nat n O) 
236 \to (eq nat (minus (plus O y) (S z0)) (plus (minus O (S z0)) y))))) with 
237 [le_n \Rightarrow (\lambda (H1: (eq nat (S z0) O)).(let H2 \def (eq_ind nat 
238 (S z0) (\lambda (e: nat).(match e in nat return (\lambda (_: nat).Prop) with 
239 [O \Rightarrow False | (S _) \Rightarrow True])) I O H1) in (False_ind (eq 
240 nat (minus (plus O y) (S z0)) (plus (minus O (S z0)) y)) H2))) | (le_S m H1) 
241 \Rightarrow (\lambda (H2: (eq nat (S m) O)).((let H3 \def (eq_ind nat (S m) 
242 (\lambda (e: nat).(match e in nat return (\lambda (_: nat).Prop) with [O 
243 \Rightarrow False | (S _) \Rightarrow True])) I O H2) in (False_ind ((le (S 
244 z0) m) \to (eq nat (minus (plus O y) (S z0)) (plus (minus O (S z0)) y))) H3)) 
245 H1))]) in (H1 (refl_equal nat O))))) (\lambda (n: nat).(\lambda (_: (((le (S 
246 z0) n) \to (\forall (y: nat).(eq nat (minus (plus n y) (S z0)) (plus (minus n 
247 (S z0)) y)))))).(\lambda (H1: (le (S z0) (S n))).(\lambda (y: nat).(H n 
248 (le_S_n z0 n H1) y))))) x)))) z).
249
250 theorem le_minus:
251  \forall (x: nat).(\forall (z: nat).(\forall (y: nat).((le (plus x y) z) \to 
252 (le x (minus z y)))))
253 \def
254  \lambda (x: nat).(\lambda (z: nat).(\lambda (y: nat).(\lambda (H: (le (plus 
255 x y) z)).(eq_ind nat (minus (plus x y) y) (\lambda (n: nat).(le n (minus z 
256 y))) (le_minus_minus y (plus x y) (le_plus_r x y) z H) x (minus_plus_r x 
257 y))))).
258
259 theorem le_trans_plus_r:
260  \forall (x: nat).(\forall (y: nat).(\forall (z: nat).((le (plus x y) z) \to 
261 (le y z))))
262 \def
263  \lambda (x: nat).(\lambda (y: nat).(\lambda (z: nat).(\lambda (H: (le (plus 
264 x y) z)).(le_trans y (plus x y) z (le_plus_r x y) H)))).
265
266 theorem le_gen_S:
267  \forall (m: nat).(\forall (x: nat).((le (S m) x) \to (ex2 nat (\lambda (n: 
268 nat).(eq nat x (S n))) (\lambda (n: nat).(le m n)))))
269 \def
270  \lambda (m: nat).(\lambda (x: nat).(\lambda (H: (le (S m) x)).(let H0 \def 
271 (match H in le return (\lambda (n: nat).(\lambda (_: (le ? n)).((eq nat n x) 
272 \to (ex2 nat (\lambda (n0: nat).(eq nat x (S n0))) (\lambda (n0: nat).(le m 
273 n0)))))) with [le_n \Rightarrow (\lambda (H0: (eq nat (S m) x)).(eq_ind nat 
274 (S m) (\lambda (n: nat).(ex2 nat (\lambda (n0: nat).(eq nat n (S n0))) 
275 (\lambda (n0: nat).(le m n0)))) (ex_intro2 nat (\lambda (n: nat).(eq nat (S 
276 m) (S n))) (\lambda (n: nat).(le m n)) m (refl_equal nat (S m)) (le_n m)) x 
277 H0)) | (le_S m0 H0) \Rightarrow (\lambda (H1: (eq nat (S m0) x)).(eq_ind nat 
278 (S m0) (\lambda (n: nat).((le (S m) m0) \to (ex2 nat (\lambda (n0: nat).(eq 
279 nat n (S n0))) (\lambda (n0: nat).(le m n0))))) (\lambda (H2: (le (S m) 
280 m0)).(ex_intro2 nat (\lambda (n: nat).(eq nat (S m0) (S n))) (\lambda (n: 
281 nat).(le m n)) m0 (refl_equal nat (S m0)) (le_S_n m m0 (le_S (S m) m0 H2)))) 
282 x H1 H0))]) in (H0 (refl_equal nat x))))).
283
284 theorem lt_x_plus_x_Sy:
285  \forall (x: nat).(\forall (y: nat).(lt x (plus x (S y))))
286 \def
287  \lambda (x: nat).(\lambda (y: nat).(eq_ind_r nat (plus (S y) x) (\lambda (n: 
288 nat).(lt x n)) (le_S_n (S x) (S (plus y x)) (le_n_S (S x) (S (plus y x)) 
289 (le_n_S x (plus y x) (le_plus_r y x)))) (plus x (S y)) (plus_comm x (S y)))).
290
291 theorem simpl_lt_plus_r:
292  \forall (p: nat).(\forall (n: nat).(\forall (m: nat).((lt (plus n p) (plus m 
293 p)) \to (lt n m))))
294 \def
295  \lambda (p: nat).(\lambda (n: nat).(\lambda (m: nat).(\lambda (H: (lt (plus 
296 n p) (plus m p))).(plus_lt_reg_l n m p (let H0 \def (eq_ind nat (plus n p) 
297 (\lambda (n0: nat).(lt n0 (plus m p))) H (plus p n) (plus_comm n p)) in (let 
298 H1 \def (eq_ind nat (plus m p) (\lambda (n0: nat).(lt (plus p n) n0)) H0 
299 (plus p m) (plus_comm m p)) in H1)))))).
300
301 theorem minus_x_Sy:
302  \forall (x: nat).(\forall (y: nat).((lt y x) \to (eq nat (minus x y) (S 
303 (minus x (S y))))))
304 \def
305  \lambda (x: nat).(nat_ind (\lambda (n: nat).(\forall (y: nat).((lt y n) \to 
306 (eq nat (minus n y) (S (minus n (S y))))))) (\lambda (y: nat).(\lambda (H: 
307 (lt y O)).(let H0 \def (match H in le return (\lambda (n: nat).(\lambda (_: 
308 (le ? n)).((eq nat n O) \to (eq nat (minus O y) (S (minus O (S y))))))) with 
309 [le_n \Rightarrow (\lambda (H0: (eq nat (S y) O)).(let H1 \def (eq_ind nat (S 
310 y) (\lambda (e: nat).(match e in nat return (\lambda (_: nat).Prop) with [O 
311 \Rightarrow False | (S _) \Rightarrow True])) I O H0) in (False_ind (eq nat 
312 (minus O y) (S (minus O (S y)))) H1))) | (le_S m H0) \Rightarrow (\lambda 
313 (H1: (eq nat (S m) O)).((let H2 \def (eq_ind nat (S m) (\lambda (e: 
314 nat).(match e in nat return (\lambda (_: nat).Prop) with [O \Rightarrow False 
315 | (S _) \Rightarrow True])) I O H1) in (False_ind ((le (S y) m) \to (eq nat 
316 (minus O y) (S (minus O (S y))))) H2)) H0))]) in (H0 (refl_equal nat O))))) 
317 (\lambda (n: nat).(\lambda (H: ((\forall (y: nat).((lt y n) \to (eq nat 
318 (minus n y) (S (minus n (S y)))))))).(\lambda (y: nat).(nat_ind (\lambda (n0: 
319 nat).((lt n0 (S n)) \to (eq nat (minus (S n) n0) (S (minus (S n) (S n0)))))) 
320 (\lambda (_: (lt O (S n))).(eq_ind nat n (\lambda (n0: nat).(eq nat (S n) (S 
321 n0))) (refl_equal nat (S n)) (minus n O) (minus_n_O n))) (\lambda (n0: 
322 nat).(\lambda (_: (((lt n0 (S n)) \to (eq nat (minus (S n) n0) (S (minus (S 
323 n) (S n0))))))).(\lambda (H1: (lt (S n0) (S n))).(let H2 \def (le_S_n (S n0) 
324 n H1) in (H n0 H2))))) y)))) x).
325
326 theorem lt_plus_minus:
327  \forall (x: nat).(\forall (y: nat).((lt x y) \to (eq nat y (S (plus x (minus 
328 y (S x)))))))
329 \def
330  \lambda (x: nat).(\lambda (y: nat).(\lambda (H: (lt x y)).(le_plus_minus (S 
331 x) y H))).
332
333 theorem lt_plus_minus_r:
334  \forall (x: nat).(\forall (y: nat).((lt x y) \to (eq nat y (S (plus (minus y 
335 (S x)) x)))))
336 \def
337  \lambda (x: nat).(\lambda (y: nat).(\lambda (H: (lt x y)).(eq_ind_r nat 
338 (plus x (minus y (S x))) (\lambda (n: nat).(eq nat y (S n))) (lt_plus_minus x 
339 y H) (plus (minus y (S x)) x) (plus_comm (minus y (S x)) x)))).
340
341 theorem minus_x_SO:
342  \forall (x: nat).((lt O x) \to (eq nat x (S (minus x (S O)))))
343 \def
344  \lambda (x: nat).(\lambda (H: (lt O x)).(eq_ind nat (minus x O) (\lambda (n: 
345 nat).(eq nat x n)) (eq_ind nat x (\lambda (n: nat).(eq nat x n)) (refl_equal 
346 nat x) (minus x O) (minus_n_O x)) (S (minus x (S O))) (minus_x_Sy x O H))).
347
348 theorem le_x_pred_y:
349  \forall (y: nat).(\forall (x: nat).((lt x y) \to (le x (pred y))))
350 \def
351  \lambda (y: nat).(nat_ind (\lambda (n: nat).(\forall (x: nat).((lt x n) \to 
352 (le x (pred n))))) (\lambda (x: nat).(\lambda (H: (lt x O)).(let H0 \def 
353 (match H in le return (\lambda (n: nat).(\lambda (_: (le ? n)).((eq nat n O) 
354 \to (le x O)))) with [le_n \Rightarrow (\lambda (H0: (eq nat (S x) O)).(let 
355 H1 \def (eq_ind nat (S x) (\lambda (e: nat).(match e in nat return (\lambda 
356 (_: nat).Prop) with [O \Rightarrow False | (S _) \Rightarrow True])) I O H0) 
357 in (False_ind (le x O) H1))) | (le_S m H0) \Rightarrow (\lambda (H1: (eq nat 
358 (S m) O)).((let H2 \def (eq_ind nat (S m) (\lambda (e: nat).(match e in nat 
359 return (\lambda (_: nat).Prop) with [O \Rightarrow False | (S _) \Rightarrow 
360 True])) I O H1) in (False_ind ((le (S x) m) \to (le x O)) H2)) H0))]) in (H0 
361 (refl_equal nat O))))) (\lambda (n: nat).(\lambda (_: ((\forall (x: nat).((lt 
362 x n) \to (le x (pred n)))))).(\lambda (x: nat).(\lambda (H0: (lt x (S 
363 n))).(le_S_n x n H0))))) y).
364
365 theorem lt_le_minus:
366  \forall (x: nat).(\forall (y: nat).((lt x y) \to (le x (minus y (S O)))))
367 \def
368  \lambda (x: nat).(\lambda (y: nat).(\lambda (H: (lt x y)).(le_minus x y (S 
369 O) (eq_ind_r nat (plus (S O) x) (\lambda (n: nat).(le n y)) H (plus x (S O)) 
370 (plus_comm x (S O)))))).
371
372 theorem lt_le_e:
373  \forall (n: nat).(\forall (d: nat).(\forall (P: Prop).((((lt n d) \to P)) 
374 \to ((((le d n) \to P)) \to P))))
375 \def
376  \lambda (n: nat).(\lambda (d: nat).(\lambda (P: Prop).(\lambda (H: (((lt n 
377 d) \to P))).(\lambda (H0: (((le d n) \to P))).(let H1 \def (le_or_lt d n) in 
378 (or_ind (le d n) (lt n d) P H0 H H1)))))).
379
380 theorem lt_eq_e:
381  \forall (x: nat).(\forall (y: nat).(\forall (P: Prop).((((lt x y) \to P)) 
382 \to ((((eq nat x y) \to P)) \to ((le x y) \to P)))))
383 \def
384  \lambda (x: nat).(\lambda (y: nat).(\lambda (P: Prop).(\lambda (H: (((lt x 
385 y) \to P))).(\lambda (H0: (((eq nat x y) \to P))).(\lambda (H1: (le x 
386 y)).(or_ind (lt x y) (eq nat x y) P H H0 (le_lt_or_eq x y H1))))))).
387
388 theorem lt_eq_gt_e:
389  \forall (x: nat).(\forall (y: nat).(\forall (P: Prop).((((lt x y) \to P)) 
390 \to ((((eq nat x y) \to P)) \to ((((lt y x) \to P)) \to P)))))
391 \def
392  \lambda (x: nat).(\lambda (y: nat).(\lambda (P: Prop).(\lambda (H: (((lt x 
393 y) \to P))).(\lambda (H0: (((eq nat x y) \to P))).(\lambda (H1: (((lt y x) 
394 \to P))).(lt_le_e x y P H (\lambda (H2: (le y x)).(lt_eq_e y x P H1 (\lambda 
395 (H3: (eq nat y x)).(H0 (sym_eq nat y x H3))) H2)))))))).
396
397 theorem lt_gen_xS:
398  \forall (x: nat).(\forall (n: nat).((lt x (S n)) \to (or (eq nat x O) (ex2 
399 nat (\lambda (m: nat).(eq nat x (S m))) (\lambda (m: nat).(lt m n))))))
400 \def
401  \lambda (x: nat).(nat_ind (\lambda (n: nat).(\forall (n0: nat).((lt n (S 
402 n0)) \to (or (eq nat n O) (ex2 nat (\lambda (m: nat).(eq nat n (S m))) 
403 (\lambda (m: nat).(lt m n0))))))) (\lambda (n: nat).(\lambda (_: (lt O (S 
404 n))).(or_introl (eq nat O O) (ex2 nat (\lambda (m: nat).(eq nat O (S m))) 
405 (\lambda (m: nat).(lt m n))) (refl_equal nat O)))) (\lambda (n: nat).(\lambda 
406 (_: ((\forall (n0: nat).((lt n (S n0)) \to (or (eq nat n O) (ex2 nat (\lambda 
407 (m: nat).(eq nat n (S m))) (\lambda (m: nat).(lt m n0)))))))).(\lambda (n0: 
408 nat).(\lambda (H0: (lt (S n) (S n0))).(or_intror (eq nat (S n) O) (ex2 nat 
409 (\lambda (m: nat).(eq nat (S n) (S m))) (\lambda (m: nat).(lt m n0))) 
410 (ex_intro2 nat (\lambda (m: nat).(eq nat (S n) (S m))) (\lambda (m: nat).(lt 
411 m n0)) n (refl_equal nat (S n)) (le_S_n (S n) n0 H0))))))) x).
412
413 theorem le_lt_false:
414  \forall (x: nat).(\forall (y: nat).((le x y) \to ((lt y x) \to (\forall (P: 
415 Prop).P))))
416 \def
417  \lambda (x: nat).(\lambda (y: nat).(\lambda (H: (le x y)).(\lambda (H0: (lt 
418 y x)).(\lambda (P: Prop).(False_ind P (le_not_lt x y H H0)))))).
419
420 theorem lt_neq:
421  \forall (x: nat).(\forall (y: nat).((lt x y) \to (not (eq nat x y))))
422 \def
423  \lambda (x: nat).(\lambda (y: nat).(\lambda (H: (lt x y)).(\lambda (H0: (eq 
424 nat x y)).(let H1 \def (eq_ind nat x (\lambda (n: nat).(lt n y)) H y H0) in 
425 (lt_irrefl y H1))))).
426
427 theorem arith0:
428  \forall (h2: nat).(\forall (d2: nat).(\forall (n: nat).((le (plus d2 h2) n) 
429 \to (\forall (h1: nat).(le (plus d2 h1) (minus (plus n h1) h2))))))
430 \def
431  \lambda (h2: nat).(\lambda (d2: nat).(\lambda (n: nat).(\lambda (H: (le 
432 (plus d2 h2) n)).(\lambda (h1: nat).(eq_ind nat (minus (plus h2 (plus d2 h1)) 
433 h2) (\lambda (n0: nat).(le n0 (minus (plus n h1) h2))) (le_minus_minus h2 
434 (plus h2 (plus d2 h1)) (le_plus_l h2 (plus d2 h1)) (plus n h1) (eq_ind_r nat 
435 (plus (plus h2 d2) h1) (\lambda (n0: nat).(le n0 (plus n h1))) (eq_ind_r nat 
436 (plus d2 h2) (\lambda (n0: nat).(le (plus n0 h1) (plus n h1))) (le_S_n (plus 
437 (plus d2 h2) h1) (plus n h1) (lt_le_S (plus (plus d2 h2) h1) (S (plus n h1)) 
438 (le_lt_n_Sm (plus (plus d2 h2) h1) (plus n h1) (plus_le_compat (plus d2 h2) n 
439 h1 h1 H (le_n h1))))) (plus h2 d2) (plus_comm h2 d2)) (plus h2 (plus d2 h1)) 
440 (plus_assoc h2 d2 h1))) (plus d2 h1) (minus_plus h2 (plus d2 h1))))))).
441
442 theorem O_minus:
443  \forall (x: nat).(\forall (y: nat).((le x y) \to (eq nat (minus x y) O)))
444 \def
445  \lambda (x: nat).(nat_ind (\lambda (n: nat).(\forall (y: nat).((le n y) \to 
446 (eq nat (minus n y) O)))) (\lambda (y: nat).(\lambda (_: (le O 
447 y)).(refl_equal nat O))) (\lambda (x0: nat).(\lambda (H: ((\forall (y: 
448 nat).((le x0 y) \to (eq nat (minus x0 y) O))))).(\lambda (y: nat).(nat_ind 
449 (\lambda (n: nat).((le (S x0) n) \to (eq nat (match n with [O \Rightarrow (S 
450 x0) | (S l) \Rightarrow (minus x0 l)]) O))) (\lambda (H0: (le (S x0) 
451 O)).(ex2_ind nat (\lambda (n: nat).(eq nat O (S n))) (\lambda (n: nat).(le x0 
452 n)) (eq nat (S x0) O) (\lambda (x1: nat).(\lambda (H1: (eq nat O (S 
453 x1))).(\lambda (_: (le x0 x1)).(let H3 \def (eq_ind nat O (\lambda (ee: 
454 nat).(match ee in nat return (\lambda (_: nat).Prop) with [O \Rightarrow True 
455 | (S _) \Rightarrow False])) I (S x1) H1) in (False_ind (eq nat (S x0) O) 
456 H3))))) (le_gen_S x0 O H0))) (\lambda (n: nat).(\lambda (_: (((le (S x0) n) 
457 \to (eq nat (match n with [O \Rightarrow (S x0) | (S l) \Rightarrow (minus x0 
458 l)]) O)))).(\lambda (H1: (le (S x0) (S n))).(H n (le_S_n x0 n H1))))) y)))) 
459 x).
460
461 theorem minus_minus:
462  \forall (z: nat).(\forall (x: nat).(\forall (y: nat).((le z x) \to ((le z y) 
463 \to ((eq nat (minus x z) (minus y z)) \to (eq nat x y))))))
464 \def
465  \lambda (z: nat).(nat_ind (\lambda (n: nat).(\forall (x: nat).(\forall (y: 
466 nat).((le n x) \to ((le n y) \to ((eq nat (minus x n) (minus y n)) \to (eq 
467 nat x y))))))) (\lambda (x: nat).(\lambda (y: nat).(\lambda (_: (le O 
468 x)).(\lambda (_: (le O y)).(\lambda (H1: (eq nat (minus x O) (minus y 
469 O))).(let H2 \def (eq_ind_r nat (minus x O) (\lambda (n: nat).(eq nat n 
470 (minus y O))) H1 x (minus_n_O x)) in (let H3 \def (eq_ind_r nat (minus y O) 
471 (\lambda (n: nat).(eq nat x n)) H2 y (minus_n_O y)) in H3))))))) (\lambda 
472 (z0: nat).(\lambda (IH: ((\forall (x: nat).(\forall (y: nat).((le z0 x) \to 
473 ((le z0 y) \to ((eq nat (minus x z0) (minus y z0)) \to (eq nat x 
474 y)))))))).(\lambda (x: nat).(nat_ind (\lambda (n: nat).(\forall (y: nat).((le 
475 (S z0) n) \to ((le (S z0) y) \to ((eq nat (minus n (S z0)) (minus y (S z0))) 
476 \to (eq nat n y)))))) (\lambda (y: nat).(\lambda (H: (le (S z0) O)).(\lambda 
477 (_: (le (S z0) y)).(\lambda (_: (eq nat (minus O (S z0)) (minus y (S 
478 z0)))).(ex2_ind nat (\lambda (n: nat).(eq nat O (S n))) (\lambda (n: nat).(le 
479 z0 n)) (eq nat O y) (\lambda (x0: nat).(\lambda (H2: (eq nat O (S 
480 x0))).(\lambda (_: (le z0 x0)).(let H4 \def (eq_ind nat O (\lambda (ee: 
481 nat).(match ee in nat return (\lambda (_: nat).Prop) with [O \Rightarrow True 
482 | (S _) \Rightarrow False])) I (S x0) H2) in (False_ind (eq nat O y) H4))))) 
483 (le_gen_S z0 O H)))))) (\lambda (x0: nat).(\lambda (_: ((\forall (y: 
484 nat).((le (S z0) x0) \to ((le (S z0) y) \to ((eq nat (minus x0 (S z0)) (minus 
485 y (S z0))) \to (eq nat x0 y))))))).(\lambda (y: nat).(nat_ind (\lambda (n: 
486 nat).((le (S z0) (S x0)) \to ((le (S z0) n) \to ((eq nat (minus (S x0) (S 
487 z0)) (minus n (S z0))) \to (eq nat (S x0) n))))) (\lambda (_: (le (S z0) (S 
488 x0))).(\lambda (H0: (le (S z0) O)).(\lambda (_: (eq nat (minus (S x0) (S z0)) 
489 (minus O (S z0)))).(ex2_ind nat (\lambda (n: nat).(eq nat O (S n))) (\lambda 
490 (n: nat).(le z0 n)) (eq nat (S x0) O) (\lambda (x1: nat).(\lambda (H2: (eq 
491 nat O (S x1))).(\lambda (_: (le z0 x1)).(let H4 \def (eq_ind nat O (\lambda 
492 (ee: nat).(match ee in nat return (\lambda (_: nat).Prop) with [O \Rightarrow 
493 True | (S _) \Rightarrow False])) I (S x1) H2) in (False_ind (eq nat (S x0) 
494 O) H4))))) (le_gen_S z0 O H0))))) (\lambda (y0: nat).(\lambda (_: (((le (S 
495 z0) (S x0)) \to ((le (S z0) y0) \to ((eq nat (minus (S x0) (S z0)) (minus y0 
496 (S z0))) \to (eq nat (S x0) y0)))))).(\lambda (H: (le (S z0) (S 
497 x0))).(\lambda (H0: (le (S z0) (S y0))).(\lambda (H1: (eq nat (minus (S x0) 
498 (S z0)) (minus (S y0) (S z0)))).(f_equal nat nat S x0 y0 (IH x0 y0 (le_S_n z0 
499 x0 H) (le_S_n z0 y0 H0) H1))))))) y)))) x)))) z).
500
501 theorem plus_plus:
502  \forall (z: nat).(\forall (x1: nat).(\forall (x2: nat).(\forall (y1: 
503 nat).(\forall (y2: nat).((le x1 z) \to ((le x2 z) \to ((eq nat (plus (minus z 
504 x1) y1) (plus (minus z x2) y2)) \to (eq nat (plus x1 y2) (plus x2 y1)))))))))
505 \def
506  \lambda (z: nat).(nat_ind (\lambda (n: nat).(\forall (x1: nat).(\forall (x2: 
507 nat).(\forall (y1: nat).(\forall (y2: nat).((le x1 n) \to ((le x2 n) \to ((eq 
508 nat (plus (minus n x1) y1) (plus (minus n x2) y2)) \to (eq nat (plus x1 y2) 
509 (plus x2 y1)))))))))) (\lambda (x1: nat).(\lambda (x2: nat).(\lambda (y1: 
510 nat).(\lambda (y2: nat).(\lambda (H: (le x1 O)).(\lambda (H0: (le x2 
511 O)).(\lambda (H1: (eq nat y1 y2)).(eq_ind nat y1 (\lambda (n: nat).(eq nat 
512 (plus x1 n) (plus x2 y1))) (let H_y \def (le_n_O_eq x2 H0) in (eq_ind nat O 
513 (\lambda (n: nat).(eq nat (plus x1 y1) (plus n y1))) (let H_y0 \def 
514 (le_n_O_eq x1 H) in (eq_ind nat O (\lambda (n: nat).(eq nat (plus n y1) (plus 
515 O y1))) (refl_equal nat (plus O y1)) x1 H_y0)) x2 H_y)) y2 H1)))))))) 
516 (\lambda (z0: nat).(\lambda (IH: ((\forall (x1: nat).(\forall (x2: 
517 nat).(\forall (y1: nat).(\forall (y2: nat).((le x1 z0) \to ((le x2 z0) \to 
518 ((eq nat (plus (minus z0 x1) y1) (plus (minus z0 x2) y2)) \to (eq nat (plus 
519 x1 y2) (plus x2 y1))))))))))).(\lambda (x1: nat).(nat_ind (\lambda (n: 
520 nat).(\forall (x2: nat).(\forall (y1: nat).(\forall (y2: nat).((le n (S z0)) 
521 \to ((le x2 (S z0)) \to ((eq nat (plus (minus (S z0) n) y1) (plus (minus (S 
522 z0) x2) y2)) \to (eq nat (plus n y2) (plus x2 y1))))))))) (\lambda (x2: 
523 nat).(nat_ind (\lambda (n: nat).(\forall (y1: nat).(\forall (y2: nat).((le O 
524 (S z0)) \to ((le n (S z0)) \to ((eq nat (plus (minus (S z0) O) y1) (plus 
525 (minus (S z0) n) y2)) \to (eq nat (plus O y2) (plus n y1)))))))) (\lambda 
526 (y1: nat).(\lambda (y2: nat).(\lambda (_: (le O (S z0))).(\lambda (_: (le O 
527 (S z0))).(\lambda (H1: (eq nat (S (plus z0 y1)) (S (plus z0 y2)))).(let H_y 
528 \def (IH O O) in (let H2 \def (eq_ind_r nat (minus z0 O) (\lambda (n: 
529 nat).(\forall (y3: nat).(\forall (y4: nat).((le O z0) \to ((le O z0) \to ((eq 
530 nat (plus n y3) (plus n y4)) \to (eq nat y4 y3))))))) H_y z0 (minus_n_O z0)) 
531 in (H2 y1 y2 (le_O_n z0) (le_O_n z0) (H2 (plus z0 y2) (plus z0 y1) (le_O_n 
532 z0) (le_O_n z0) (f_equal nat nat (plus z0) (plus z0 y2) (plus z0 y1) (sym_eq 
533 nat (plus z0 y1) (plus z0 y2) (eq_add_S (plus z0 y1) (plus z0 y2) 
534 H1)))))))))))) (\lambda (x3: nat).(\lambda (_: ((\forall (y1: nat).(\forall 
535 (y2: nat).((le O (S z0)) \to ((le x3 (S z0)) \to ((eq nat (S (plus z0 y1)) 
536 (plus (match x3 with [O \Rightarrow (S z0) | (S l) \Rightarrow (minus z0 l)]) 
537 y2)) \to (eq nat y2 (plus x3 y1))))))))).(\lambda (y1: nat).(\lambda (y2: 
538 nat).(\lambda (_: (le O (S z0))).(\lambda (H0: (le (S x3) (S z0))).(\lambda 
539 (H1: (eq nat (S (plus z0 y1)) (plus (minus z0 x3) y2))).(let H_y \def (IH O 
540 x3 (S y1)) in (let H2 \def (eq_ind_r nat (minus z0 O) (\lambda (n: 
541 nat).(\forall (y3: nat).((le O z0) \to ((le x3 z0) \to ((eq nat (plus n (S 
542 y1)) (plus (minus z0 x3) y3)) \to (eq nat y3 (plus x3 (S y1)))))))) H_y z0 
543 (minus_n_O z0)) in (let H3 \def (eq_ind_r nat (plus z0 (S y1)) (\lambda (n: 
544 nat).(\forall (y3: nat).((le O z0) \to ((le x3 z0) \to ((eq nat n (plus 
545 (minus z0 x3) y3)) \to (eq nat y3 (plus x3 (S y1)))))))) H2 (S (plus z0 y1)) 
546 (plus_n_Sm z0 y1)) in (let H4 \def (eq_ind_r nat (plus x3 (S y1)) (\lambda 
547 (n: nat).(\forall (y3: nat).((le O z0) \to ((le x3 z0) \to ((eq nat (S (plus 
548 z0 y1)) (plus (minus z0 x3) y3)) \to (eq nat y3 n)))))) H3 (S (plus x3 y1)) 
549 (plus_n_Sm x3 y1)) in (H4 y2 (le_O_n z0) (le_S_n x3 z0 H0) H1)))))))))))) 
550 x2)) (\lambda (x2: nat).(\lambda (_: ((\forall (x3: nat).(\forall (y1: 
551 nat).(\forall (y2: nat).((le x2 (S z0)) \to ((le x3 (S z0)) \to ((eq nat 
552 (plus (minus (S z0) x2) y1) (plus (minus (S z0) x3) y2)) \to (eq nat (plus x2 
553 y2) (plus x3 y1)))))))))).(\lambda (x3: nat).(nat_ind (\lambda (n: 
554 nat).(\forall (y1: nat).(\forall (y2: nat).((le (S x2) (S z0)) \to ((le n (S 
555 z0)) \to ((eq nat (plus (minus (S z0) (S x2)) y1) (plus (minus (S z0) n) y2)) 
556 \to (eq nat (plus (S x2) y2) (plus n y1)))))))) (\lambda (y1: nat).(\lambda 
557 (y2: nat).(\lambda (H: (le (S x2) (S z0))).(\lambda (_: (le O (S 
558 z0))).(\lambda (H1: (eq nat (plus (minus z0 x2) y1) (S (plus z0 y2)))).(let 
559 H_y \def (IH x2 O y1 (S y2)) in (let H2 \def (eq_ind_r nat (minus z0 O) 
560 (\lambda (n: nat).((le x2 z0) \to ((le O z0) \to ((eq nat (plus (minus z0 x2) 
561 y1) (plus n (S y2))) \to (eq nat (plus x2 (S y2)) y1))))) H_y z0 (minus_n_O 
562 z0)) in (let H3 \def (eq_ind_r nat (plus z0 (S y2)) (\lambda (n: nat).((le x2 
563 z0) \to ((le O z0) \to ((eq nat (plus (minus z0 x2) y1) n) \to (eq nat (plus 
564 x2 (S y2)) y1))))) H2 (S (plus z0 y2)) (plus_n_Sm z0 y2)) in (let H4 \def 
565 (eq_ind_r nat (plus x2 (S y2)) (\lambda (n: nat).((le x2 z0) \to ((le O z0) 
566 \to ((eq nat (plus (minus z0 x2) y1) (S (plus z0 y2))) \to (eq nat n y1))))) 
567 H3 (S (plus x2 y2)) (plus_n_Sm x2 y2)) in (H4 (le_S_n x2 z0 H) (le_O_n z0) 
568 H1)))))))))) (\lambda (x4: nat).(\lambda (_: ((\forall (y1: nat).(\forall 
569 (y2: nat).((le (S x2) (S z0)) \to ((le x4 (S z0)) \to ((eq nat (plus (minus 
570 z0 x2) y1) (plus (match x4 with [O \Rightarrow (S z0) | (S l) \Rightarrow 
571 (minus z0 l)]) y2)) \to (eq nat (S (plus x2 y2)) (plus x4 
572 y1))))))))).(\lambda (y1: nat).(\lambda (y2: nat).(\lambda (H: (le (S x2) (S 
573 z0))).(\lambda (H0: (le (S x4) (S z0))).(\lambda (H1: (eq nat (plus (minus z0 
574 x2) y1) (plus (minus z0 x4) y2))).(f_equal nat nat S (plus x2 y2) (plus x4 
575 y1) (IH x2 x4 y1 y2 (le_S_n x2 z0 H) (le_S_n x4 z0 H0) H1))))))))) x3)))) 
576 x1)))) z).
577
578 theorem le_S_minus:
579  \forall (d: nat).(\forall (h: nat).(\forall (n: nat).((le (plus d h) n) \to 
580 (le d (S (minus n h))))))
581 \def
582  \lambda (d: nat).(\lambda (h: nat).(\lambda (n: nat).(\lambda (H: (le (plus 
583 d h) n)).(let H0 \def (le_trans d (plus d h) n (le_plus_l d h) H) in (let H1 
584 \def (eq_ind nat n (\lambda (n0: nat).(le d n0)) H0 (plus (minus n h) h) 
585 (le_plus_minus_sym h n (le_trans_plus_r d h n H))) in (le_S d (minus n h) 
586 (le_minus d n h H))))))).
587